Home
Class 12
MATHS
Locus of the point (cos theta +sin theta...

Locus of the point `(cos theta +sin theta, cos theta - sin theta)` where `theta` is parameter is

A

`x^(2)+y^(2)=1`

B

`x^(2)+y^(2)=4`

C

`x^(2)+y^(2)=2`

D

`y^(2)=4ax`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the point \((\cos \theta + \sin \theta, \cos \theta - \sin \theta)\) where \(\theta\) is a parameter, we can follow these steps: ### Step 1: Define the Coordinates Let: - \(x = \cos \theta + \sin \theta\) (Equation 1) - \(y = \cos \theta - \sin \theta\) (Equation 2) ### Step 2: Square Both Equations Now, we will square both equations: - From Equation 1: \[ x^2 = (\cos \theta + \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta + 2\cos \theta \sin \theta \] - From Equation 2: \[ y^2 = (\cos \theta - \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta - 2\cos \theta \sin \theta \] ### Step 3: Add the Squared Equations Now, add the two squared equations: \[ x^2 + y^2 = \left(\cos^2 \theta + \sin^2 \theta + 2\cos \theta \sin \theta\right) + \left(\cos^2 \theta + \sin^2 \theta - 2\cos \theta \sin \theta\right) \] ### Step 4: Simplify the Expression Combine like terms: \[ x^2 + y^2 = 2(\cos^2 \theta + \sin^2 \theta) \] Using the Pythagorean identity \(\cos^2 \theta + \sin^2 \theta = 1\): \[ x^2 + y^2 = 2 \cdot 1 = 2 \] ### Conclusion Thus, the locus of the point is given by: \[ x^2 + y^2 = 2 \] ### Final Answer The correct option is \(x^2 + y^2 = 2\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

The locus of the point (2+3cos theta, 1+3 sin theta) when theta is parameter is

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta