Home
Class 12
MATHS
If 3x+2y=3 and 2x+5y=1 are conjugate lin...

If `3x+2y=3` and `2x+5y=1` are conjugate lines w.r.t the circle `x^(2)+y^(2)=r^(2)` then `r^(2)=`

A

`3/16`

B

`16/3`

C

`4/(sqrt(3))`

D

`(sqrt(3))/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r^2 \) given that the lines \( 3x + 2y = 3 \) and \( 2x + 5y = 1 \) are conjugate with respect to the circle \( x^2 + y^2 = r^2 \). ### Step-by-Step Solution: 1. **Rewrite the equations of the lines in standard form**: - The first line \( 3x + 2y = 3 \) can be rewritten as: \[ 3x + 2y - 3 = 0 \] Here, \( L_1 = 3 \), \( M_1 = 2 \), and \( N_1 = -3 \). - The second line \( 2x + 5y = 1 \) can be rewritten as: \[ 2x + 5y - 1 = 0 \] Here, \( L_2 = 2 \), \( M_2 = 5 \), and \( N_2 = -1 \). 2. **Identify the coefficients for the circle**: - The equation of the circle is \( x^2 + y^2 = r^2 \), which can be rewritten as: \[ x^2 + y^2 + 0x + 0y - r^2 = 0 \] Thus, \( g = 0 \), \( f = 0 \), and \( c = -r^2 \). 3. **Use the condition for conjugate lines**: - The condition for the lines to be conjugate with respect to the circle is given by: \[ r^2 (L_1 L_2 + M_1 M_2) = L_1 g + M_1 f - N_1 (L_2 g + M_2 f - N_2) \] - Substituting the values we have: \[ r^2 (3 \cdot 2 + 2 \cdot 5) = 3 \cdot 0 + 2 \cdot 0 - (-3)(2 \cdot 0 + 5 \cdot 0 - (-1)) \] 4. **Calculate the left-hand side**: - Calculate \( L_1 L_2 + M_1 M_2 \): \[ 3 \cdot 2 + 2 \cdot 5 = 6 + 10 = 16 \] - Thus, the left-hand side becomes: \[ r^2 \cdot 16 \] 5. **Calculate the right-hand side**: - The right-hand side simplifies to: \[ 0 + 0 + 3 \cdot 1 = 3 \] 6. **Set the left-hand side equal to the right-hand side**: - We have: \[ 16r^2 = 3 \] 7. **Solve for \( r^2 \)**: - Dividing both sides by 16 gives: \[ r^2 = \frac{3}{16} \] ### Final Answer: Thus, the value of \( r^2 \) is: \[ \boxed{\frac{3}{16}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x+3y=1 and 3x+4y=k are conjugate lines w.r. the circle x^(2)+y^(2)=4 then k=

If A and B are conjugate points w.r.t to circle x^(2)+y^(2)=r^(2) then OA^(2)+OB^(2)=

If kx+3y=1, 2x+y+5=0 are conjugate liens w.r.t the circle x^(2)+y^(2)-2x-4y-4=0 then k=

If (1,4), (-2,3) are conjugate points w.r.t x^(2)+y^(2)=k then k=

If (1,2),(3,a) are conjugate points w.r.t x^(2)+y^(2)=16 then a=

Find the value of k if kx+ 3y - 1 = 0, 2x + y + 5 = 0 are conjugate lines with respect to the circle x^(2) + y^(2) - 2x - 4y - 4 =0 .

The line 3x-2y=k meets the circle x^(2)+y^(2)=4r^(2) at only one point, if k^(2)=

Show that the lines 2x+3y + 11 =0 and 2x-2y-1=0 are conjugate with respect to the circle x^(2) + y^(2) + 4x+ 6y +12 = 0

Find the polar of the point (1,2) w.r.t the circle x^2+y^2=7 .

The condition for the lines lx+my+n=0 and l_(1)x+m_(1)y+n_(1)=0 to be conjugate with respect to the circle x^(2)+y^(2)=r^(2) is