Home
Class 12
MATHS
If (6,8),(k,2) are inverse points w.r.t...

If (6,8),(k,2) are inverse points w.r.t the circle `x^(2)+y^(2)=25` then 2k=

A

1

B

3

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2k\) given that the points \((6,8)\) and \((k,2)\) are inverse points with respect to the circle defined by the equation \(x^2 + y^2 = 25\). ### Step-by-step Solution: 1. **Understand the concept of inverse points**: For two points \((x_1, y_1)\) and \((x_2, y_2)\) to be inverse points with respect to a circle defined by \(x^2 + y^2 = r^2\), the following relationship must hold: \[ x_1 \cdot x_2 + y_1 \cdot y_2 = r^2 \] Here, \(r^2 = 25\), so \(r = 5\). 2. **Assign the points**: Let \((x_1, y_1) = (6, 8)\) and \((x_2, y_2) = (k, 2)\). 3. **Set up the equation**: Using the inverse point relationship: \[ 6k + 8 \cdot 2 = 25 \] 4. **Simplify the equation**: Calculate \(8 \cdot 2\): \[ 6k + 16 = 25 \] 5. **Isolate \(k\)**: Subtract 16 from both sides: \[ 6k = 25 - 16 \] \[ 6k = 9 \] 6. **Solve for \(k\)**: Divide both sides by 6: \[ k = \frac{9}{6} = \frac{3}{2} \] 7. **Find \(2k\)**: Multiply \(k\) by 2: \[ 2k = 2 \cdot \frac{3}{2} = 3 \] ### Final Answer: Thus, the value of \(2k\) is \(3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that The points (-6,2),(-3,1) are the pair of inverse points w.r.t the circle x^(2)+y^(2)=20

The inverse point of (1,2) w.r.t. the circle x^(2)+y^(2)=25 , is (5,k) then k=

If A and B are conjugate points w.r.t to circle x^(2)+y^(2)=r^(2) then OA^(2)+OB^(2)=

If (1,1), (k,2) are conjugate points with respect to the circle x^(2)+y^(2)+8x+2y+3=0 , then k=?

The inverse point of (2,-3) w.r.t to circle x^(2)+y^(2)+6x-4y-12=0 is

If 3x+2y=3 and 2x+5y=1 are conjugate lines w.r.t the circle x^(2)+y^(2)=r^(2) then r^(2)=

If 2x+3y=1 and 3x+4y=k are conjugate lines w.r. the circle x^(2)+y^(2)=4 then k=

If (1,4), (-2,3) are conjugate points w.r.t x^(2)+y^(2)=k then k=

If kx+3y=1, 2x+y+5=0 are conjugate liens w.r.t the circle x^(2)+y^(2)-2x-4y-4=0 then k=

If 4x+3y+k=0 touch the circle 2x^(2)+2y^(2)=5x then k=