Home
Class 12
MATHS
The internal centre of similitude of the...

The internal centre of similitude of the circles `x^(2)+y^(2)-2x+4y+4=0, x^(2)+y^(2)+4x-2y+1=0` divides the segment joining their centres in the ratio

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The external centre of similitude of the circle x^(2)+y^(2)-12x+8y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0 is

The circle x^(2)+y^(2)-2x+4y+4=0,x^(2)+y^(2)+4x-2y+1=0 are

The circles x^(2)+y^(2)-2x-4y-20=0, x^(2)+y^(2)+4x-2y+4=0 are

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y+4x-1 =0

The internal centre of similitude of two circles (x-3)^(2)+(y-2)^(2)=9,(x+5)^(2)+(y+6)^(2)=9 is

Find the centre and radius of the circles : x^2 + y^2 - 2x + 4y = 8

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0

Find the centre and radius of the circle x^(2) + y^(2) - 6x + 4y - 12 =0 .