Home
Class 12
MATHS
The pole of a straight line with respect...

The pole of a straight line with respect to the circle `x^(2)+y^(2)=a^(2)` lies on the circle `x^(2)+y^(2)=9a^(2)`. If the straight line touches the circle `x^(2)+y^(2)=r^(2)`, then

A

`9a^(2)=r^(2)`

B

`9r^(2)=a^(2)`

C

`r^(2)=a^(2)`

D

`3r^(2)=a^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the pole of a straight line with respect to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=9a^(2) , then the straight line touches the circle

The polar of the line 8x-2y=11 with respect to the circle 2x^(2)+2y^(2)=11 is

If the pole of the line with respect to the circle x^(2)+y^(2)=c^(2) lies on the circle x^(2)+y^(2)=9c^(2) then the line is a tangent to the circle with centre origin is

If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=a^(4) then find the equation of the circle touched by the line.

The straight-line y= mx+ c cuts the circle x^(2) + y^(2) = a^(2) in real points if :

The locus of poles of tangents to the circle (x-p)^(2)+y^(2)=b^(2) w.r.t. the circle x^(2)+y^(2)=a^(2) is

The locus of points of intersection of the tangents to x^(2)+y^(2)=a^(2) at the extremeties of a chord of circle x^(2)+y^(2)=a^(2) which touches the circle x^(2)+y^(2)-2ax=0 is/are :

The line y=mx+c intersects the circle x^(2)+y^(2)=r^(2) in two distinct points if

Find the differential equation of all straight lines touching the circle x^2+y^2=a^2

Prove that the circle x^(2)+y^(2)+2x+2y+1=0 and circle x^(2)+y^(2)-4x-6y-3=0 touch each other.