Home
Class 12
MATHS
The inverse point of (2,-3) w.r.t to cir...

The inverse point of (2,-3) w.r.t to circle `x^(2)+y^(2)+6x-4y-12=0` is

A

`(1/2,1/2)`

B

`(-1/2,1/2)`

C

`(1/2,-1/2)`

D

`(-1/2,-1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse point of the point \( P(2, -3) \) with respect to the circle given by the equation \( x^2 + y^2 + 6x - 4y - 12 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation of the circle in standard form The given equation of the circle is: \[ x^2 + y^2 + 6x - 4y - 12 = 0 \] We will complete the square for both \( x \) and \( y \). 1. For \( x \): \[ x^2 + 6x \quad \text{can be rewritten as} \quad (x + 3)^2 - 9 \] 2. For \( y \): \[ y^2 - 4y \quad \text{can be rewritten as} \quad (y - 2)^2 - 4 \] Now substituting back into the equation: \[ (x + 3)^2 - 9 + (y - 2)^2 - 4 - 12 = 0 \] Simplifying gives: \[ (x + 3)^2 + (y - 2)^2 - 25 = 0 \] Thus, we can express it as: \[ (x + 3)^2 + (y - 2)^2 = 25 \] This shows that the center of the circle is \( (-3, 2) \) and the radius \( r = 5 \). ### Step 2: Calculate the distance \( CP \) from the center to point \( P \) The center \( C \) of the circle is \( (-3, 2) \) and the point \( P \) is \( (2, -3) \). Using the distance formula: \[ CP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates: \[ CP = \sqrt{(2 - (-3))^2 + (-3 - 2)^2} = \sqrt{(2 + 3)^2 + (-5)^2} = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \] ### Step 3: Use the inverse point formula The relationship for the inverse point \( P' \) with respect to the circle is given by: \[ CP \cdot CP' = r^2 \] Where \( r^2 = 25 \). Therefore: \[ CP' = \frac{r^2}{CP} = \frac{25}{5\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} \] ### Step 4: Find the coordinates of the inverse point \( P' \) Let the coordinates of the inverse point \( P' \) be \( (x_1, y_1) \). The formulas for the coordinates of the inverse point are: \[ x_1 = \frac{r^2 (x + 3)}{CP^2} - 3 \] \[ y_1 = \frac{r^2 (y - 2)}{CP^2} + 2 \] Substituting \( P(2, -3) \): 1. For \( x_1 \): \[ x_1 = \frac{25(2 + 3)}{50} - 3 = \frac{25 \cdot 5}{50} - 3 = \frac{125}{50} - 3 = \frac{125}{50} - \frac{150}{50} = -\frac{25}{50} = -\frac{1}{2} \] 2. For \( y_1 \): \[ y_1 = \frac{25(-3 - 2)}{50} + 2 = \frac{25 \cdot (-5)}{50} + 2 = -\frac{125}{50} + 2 = -\frac{125}{50} + \frac{100}{50} = -\frac{25}{50} = -\frac{1}{2} \] ### Final Result Thus, the coordinates of the inverse point \( P' \) are: \[ P' \left(-\frac{1}{2}, -\frac{1}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse point of (1,2) w.r.t. the circle x^(2)+y^(2)=25 , is (5,k) then k=

Inverse of (0,0) w.r.t to circle x^(2)+y^(2)-4x-6y+3=0 is

The chord of contact of (3,-1) w.r.t the circle x^(2)+y^(2)+2x-4y+1=0 is

Find the inverse point of (-2,3) with respect to the circle x^(2)+y^(2)-4x-6y+9=0

The polar of the point (2t,t-4) w.r.t. the circle x^(2)+y^(2)-4x-6y+1=0 passes through the point

The chord of contact of (2,1) w.r.t to the circle x^(2)+y^(2)+4x+4y+1=0 is

The polar of (2,3) w.r.t the circle x^(2)+y^(2)-4x-6y+2=0 is a) a tangent b) a diameter c) a chord of contact d) not existing

The shortest distance of (-5,4) to the circle x^(2)+y^(2)-6x+4y-12=0 is

Locate the position of the point (2,4) w.r.t the circle x^(2)+y^(2)-5x-6y+11=0

Prove that The points (-6,2),(-3,1) are the pair of inverse points w.r.t the circle x^(2)+y^(2)=20