Home
Class 12
MATHS
The parametric equations x=(2a(1-t^(2)))...

The parametric equations `x=(2a(1-t^(2)))/(1+t^(2))` and `y=(4at)/(1+t^(2))` represents a circle whose radius is

A

a

B

2a

C

3a

D

4a

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius of the circle represented by the parametric equations \( x = \frac{2a(1-t^2)}{1+t^2} \) and \( y = \frac{4at}{1+t^2} \), we will follow these steps: ### Step 1: Substitute \( t \) with \( \tan(\theta) \) We will use the trigonometric substitution \( t = \tan(\theta) \). This gives us: - \( t^2 = \tan^2(\theta) \) - \( 1 - t^2 = 1 - \tan^2(\theta) = \frac{\cos^2(\theta) - \sin^2(\theta)}{\cos^2(\theta)} \) - \( 1 + t^2 = 1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)} \) ### Step 2: Rewrite \( x \) and \( y \) Using the substitution, we can rewrite \( x \) and \( y \): \[ x = \frac{2a(1 - \tan^2(\theta))}{1 + \tan^2(\theta)} = 2a \cdot \cos(2\theta) \] \[ y = \frac{4a\tan(\theta)}{1 + \tan^2(\theta)} = 2a \cdot \sin(2\theta) \] ### Step 3: Square and add \( x \) and \( y \) Now we square \( x \) and \( y \) and add them: \[ x^2 + y^2 = (2a \cos(2\theta))^2 + (2a \sin(2\theta))^2 \] \[ = 4a^2 \cos^2(2\theta) + 4a^2 \sin^2(2\theta) \] Using the Pythagorean identity \( \cos^2(2\theta) + \sin^2(2\theta) = 1 \): \[ x^2 + y^2 = 4a^2 (\cos^2(2\theta) + \sin^2(2\theta)) = 4a^2 \] ### Step 4: Compare with the standard equation of a circle The equation \( x^2 + y^2 = 4a^2 \) can be rewritten as: \[ x^2 + y^2 = (2a)^2 \] This matches the standard form of a circle \( x^2 + y^2 = r^2 \), where \( r \) is the radius. ### Conclusion From the comparison, we can see that the radius \( r \) of the circle is: \[ r = 2a \] ### Final Answer The radius of the circle is \( 2a \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)