Home
Class 12
MATHS
If the circles (x-a)^(2)+(y-b)^(2)=c^(2)...

If the circles `(x-a)^(2)+(y-b)^(2)=c^(2)` and `(x-b)^(2)+(y-a)^(2)=c^(2)` touch each other, then

A

`((a+b)/2,(a+b)/2)`

B

`((a-b)/2,(a-b)/2)`

C

`((b-a)/2,(b-a)/2)`

D

(0,0)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) , is

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

If the circles x^(2)+y^(2)+2ax+c=0andx^(2)+y^(2)+2by+c=0 touch each other then show that (1)/(a^(2)),(1)/(2c),(1)/(b^(2)) are in A.P.

The point at which the circles x^(2)+y^(2)-4x-4y+7=0 and x^(2)+y^(2)-12x-10y+45=0 touch each other is

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

Prove that the circle x^2 + y^2 =a^2 and (x-2a)^2 + y^2 = a^2 are equal and touch each other. Also find the equation of a circle (or circles) of equal radius touching both the circles.

Prove that the circle x^2 + y^2 =a^2 and (x-2a)^2 + y^2 = a^2 are equal and touch each other. Also find the equation of a circle (or circles) of equal radius touching both the circles.

The two circles x^(2)+y^(2)-cx=0 and x^(2)+y^(2)=4 touch each other if: