Home
Class 12
MATHS
A(cos theta, sin theta), B (sin theta,- ...

`A(cos theta, sin theta), B (sin theta,- cos theta)` are two points then centroid of triangle formed by A,B and origin lies on a circle whose centre and radius are

A

`(1,1),sqrt(2//3)`

B

`(0,0),sqrt(2//3)`

C

`(0,0),(sqrt(2))/3`

D

`(0,0),3//sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the centroid of the triangle formed by the points A(cos θ, sin θ), B(sin θ, -cos θ), and the origin O(0, 0), and to determine the circle on which this centroid lies, follow these steps: ### Step 1: Identify the Coordinates of the Points The coordinates of the points are: - A = (cos θ, sin θ) - B = (sin θ, -cos θ) - O = (0, 0) ### Step 2: Calculate the Centroid of the Triangle The centroid (G) of a triangle formed by points (x1, y1), (x2, y2), and (x3, y3) is given by the formula: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] Substituting the coordinates of points A, B, and O: \[ G\left(\frac{\cos \theta + \sin \theta + 0}{3}, \frac{\sin \theta - \cos \theta + 0}{3}\right) \] This simplifies to: \[ G\left(\frac{\cos \theta + \sin \theta}{3}, \frac{\sin \theta - \cos \theta}{3}\right) \] ### Step 3: Set the Coordinates of the Centroid Let: - \( x = \frac{\cos \theta + \sin \theta}{3} \) - \( y = \frac{\sin \theta - \cos \theta}{3} \) ### Step 4: Express x and y in Terms of θ From the equations: 1. \( 3x = \cos \theta + \sin \theta \) 2. \( 3y = \sin \theta - \cos \theta \) ### Step 5: Square and Add the Equations To find a relationship between x and y, we square both equations and add them: \[ (3x)^2 + (3y)^2 = (\cos \theta + \sin \theta)^2 + (\sin \theta - \cos \theta)^2 \] Calculating the right side: \[ (\cos^2 \theta + 2\sin \theta \cos \theta + \sin^2 \theta) + (\sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta) \] This simplifies to: \[ 2(\cos^2 \theta + \sin^2 \theta) = 2 \cdot 1 = 2 \] Thus, we have: \[ 9x^2 + 9y^2 = 2 \] ### Step 6: Simplify the Equation Dividing the entire equation by 9: \[ x^2 + y^2 = \frac{2}{9} \] ### Step 7: Identify the Circle's Center and Radius The equation \( x^2 + y^2 = r^2 \) represents a circle centered at the origin (0, 0) with radius \( r \). From our equation: - Center: (0, 0) - Radius: \( r = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3} \) ### Final Answer The center of the circle is (0, 0) and the radius is \( \frac{\sqrt{2}}{3} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

If A(cos theta, sin theta), B (sin theta, cos theta), C (1, 2) are the vertices of DeltaABC . Find the locus of its centroid if theta varies.

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

(2+sqrt(3)) sin theta +2cos theta lies between