Home
Class 12
MATHS
The line y=mx+c touches x^(2)+y^(2)=a^(2...

The line `y=mx+c` touches `x^(2)+y^(2)=a^(2)hArr`

A

`2c^(2)=a^(2)(1+m^(2))`

B

`c^(2)=a^(2)(1+m^(2))`

C

`c^(2)+a^(2)=a^(2)m^(2)`

D

`c^(2)+m^(2)=a^(2)(1+m^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The line y=mx+x and the circle x^(2)+y^(2)=a^(2) intersect at A and B. If AB=2lambda , then show that : c^(2)=(1+m^(2))(a^(2)-lambda^(2)) .

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line y=mx+2 touches the hyperola 4x^(2)-9y^(2)=36 then m=

The straight-line y= mx+ c cuts the circle x^(2) + y^(2) = a^(2) in real points if :

If the lines joining the origin to the points of intersection of the line y=mx+2 and the curve x^(2)+y^(2)=1 are at right-angles, then

Statement 1: The line y=x+2a touches the parabola y^2=4a(x+a) Statement 2: The line y=m x+a m+a/m touches y^2=4a(x+a) for all real values of mdot

The line y=mx+c intersects the circle x^(2)+y^(2)=r^(2) in two distinct points if

The line y=mx+1 touches the curves y=-x^(4)+2x^(2)+x at two points P(x_(1),y_(1)) and Q(x_(2),y_(2)) . The value of x_(1)^(2)+x_(2)^(2)+y_(1)^(2)+y_(2)^(2) is

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if