Home
Class 12
MATHS
Find the value of p so that the straight...

Find the value of p so that the straight line `x cos alpha + y sin alpha - p` may touch the circle `x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0`.

A

a

B

2a

C

`-a`

D

`a//2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the condition that the line x cos alpha+y sin alpha=p may touch the curve ((x)/(a))^(m)+((y)/(b))^(m)=1

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

The coordinates of the point at which the line x cos alpha + y sin alpha + a sin alpha = 0 touches the parabola y^(2) = 4x are