Home
Class 12
MATHS
From any point on the circle x^(2)+y^(2)...

From any point on the circle `x^(2)+y^(2)=a^(2)` tangent are drawn to the circle `x^(2)+y^(2)=a^(2)sin^(2)theta`. The angle between them is

A

a) `theta//2`

B

b) `theta`

C

c) `2theta`

D

d) `4 theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

From any point on the circle x^(2)+y^(2)=a^(2) tangents are drawn to the circle x^(2)+y^(2)=a^(2) sin^(2) theta . The angle between them is

From the points on the circle x^(2)+y^(2)=a^(2) , tangents are drawn to the hyperbola x^(2)-y^(2)=a^(2) : prove that the locus of the middle-points (x^(2)-y^(2))^(2)=a^(2)(x^(2)+y^(2))

If two tangents are drawn from a point to the circle x^(2) + y^(2) =32 to the circle x^(2) + y^(2) = 16 , then the angle between the tangents is

Tangents are drawn from any point on the circle x^(2)+y^(2) = 41 to the ellipse (x^(2))/(25)+(y^(2))/(16) =1 then the angle between the two tangents is

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

If tangents are drawn from any point on the circle x^(2) + y^(2) = 25 the ellipse (x^(2))/(16) + (y^(2))/(9) =1 then the angle between the tangents is

The tangents PA and PB are drawn from any point P of the circle x^(2)+y^(2)=2a^(2) to the circle x^(2)+y^(2)=a^(2) . The chord of contact AB on extending meets again the first circle at the points A' and B'. The locus of the point of intersection of tangents at A' and B' may be given as

Tangents are drawn from a point on the circle x^(2)+y^(2)-4x+6y-37=0 to the circle x^(2)+y^(2)-4x+6y-12=0 . The angle between the tangents, is

From an arbitrary point P on the circle x^2+y^2=9 , tangents are drawn to the circle x^2+y^2=1 , which meet x^2+y^2=9 at A and B . The locus of the point of intersection of tangents at A and B to the circle x^2+y^2=9 is (a) x^2+y^2=((27)/7)^2 (b) x^2-y^2((27)/7)^2 y^2-x^2=((27)/7)^2 (d) none of these

The length of the tangent from any point on the circle (x-3)^2 + (y + 2)^2 =5r^2 to the circle (x-3)^2 + (y + 2)^2 = r^2 is 4 units. Then the area between the circles is