Home
Class 12
MATHS
If I(1),I(2),I(3) are the intercept on x...

If `I_(1),I_(2),I_(3)` are the intercept on x-axis, y-axis, y=x w.r.t `x^(2)+y^(2)-14x-10y+24=0` then

A

`I_(2)gtI_(3)gtI_(1)`

B

`I_(3)gtI_(1)gtI_(2)`

C

`I_(1)gtI_(3)gtI_(2)`

D

`I_(3)gtI_(2)gtI_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the intercepts \( I_1, I_2, I_3 \) of the circle given by the equation \( x^2 + y^2 - 14x - 10y + 24 = 0 \) on the x-axis, y-axis, and the line \( y = x \) respectively. ### Step 1: Rewrite the Circle Equation First, we rewrite the given equation of the circle in a more standard form by completing the square. The equation is: \[ x^2 + y^2 - 14x - 10y + 24 = 0 \] Completing the square for \( x \) and \( y \): - For \( x \): \[ x^2 - 14x = (x - 7)^2 - 49 \] - For \( y \): \[ y^2 - 10y = (y - 5)^2 - 25 \] Substituting back into the equation: \[ (x - 7)^2 - 49 + (y - 5)^2 - 25 + 24 = 0 \] \[ (x - 7)^2 + (y - 5)^2 - 50 = 0 \] \[ (x - 7)^2 + (y - 5)^2 = 50 \] This represents a circle with center \( (7, 5) \) and radius \( \sqrt{50} \). ### Step 2: Find the x-intercept \( I_1 \) To find the x-intercept, set \( y = 0 \): \[ (x - 7)^2 + (0 - 5)^2 = 50 \] \[ (x - 7)^2 + 25 = 50 \] \[ (x - 7)^2 = 25 \] Taking the square root: \[ x - 7 = 5 \quad \text{or} \quad x - 7 = -5 \] Thus, \( x = 12 \) or \( x = 2 \). The x-intercepts are \( 12 \) and \( 2 \). Therefore, the length of the x-intercept \( I_1 \) is: \[ I_1 = 12 - 2 = 10 \] ### Step 3: Find the y-intercept \( I_2 \) To find the y-intercept, set \( x = 0 \): \[ (0 - 7)^2 + (y - 5)^2 = 50 \] \[ 49 + (y - 5)^2 = 50 \] \[ (y - 5)^2 = 1 \] Taking the square root: \[ y - 5 = 1 \quad \text{or} \quad y - 5 = -1 \] Thus, \( y = 6 \) or \( y = 4 \). The y-intercepts are \( 6 \) and \( 4 \). Therefore, the length of the y-intercept \( I_2 \) is: \[ I_2 = 6 - 4 = 2 \] ### Step 4: Find the intercept \( I_3 \) on the line \( y = x \) Substituting \( y = x \) into the circle's equation: \[ (x - 7)^2 + (x - 5)^2 = 50 \] Expanding: \[ (x - 7)^2 + (x - 5)^2 = (x^2 - 14x + 49) + (x^2 - 10x + 25) = 50 \] Combining like terms: \[ 2x^2 - 24x + 74 = 50 \] \[ 2x^2 - 24x + 24 = 0 \] Dividing by 2: \[ x^2 - 12x + 12 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{144 - 48}}{2} = \frac{12 \pm \sqrt{96}}{2} = 6 \pm 4\sqrt{6} \] The intercepts are \( 6 + 4\sqrt{6} \) and \( 6 - 4\sqrt{6} \). Thus, the length of the intercept \( I_3 \) is: \[ I_3 = (6 + 4\sqrt{6}) - (6 - 4\sqrt{6}) = 8\sqrt{6} \] ### Step 5: Compare \( I_1, I_2, I_3 \) Now we have: - \( I_1 = 10 \) - \( I_2 = 2 \) - \( I_3 = 8\sqrt{6} \) Calculating \( 8\sqrt{6} \): \[ \sqrt{6} \approx 2.45 \quad \Rightarrow \quad 8\sqrt{6} \approx 19.6 \] Thus, we find: \[ I_3 > I_1 > I_2 \quad \Rightarrow \quad 8\sqrt{6} > 10 > 2 \] ### Conclusion The correct order of the intercepts is: \[ I_3 > I_1 > I_2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)+y^(2)-14x-10y+24=0 makes an

x^(2) + y^(2) - 14x - 10y + 24 = 0 makes an

If the points (k,1) (2,-3) are conjugate w.r.t. x^(2)+y^(2)+4x-6y-12=0 then k

The midpoint of the chord 3x-y=10 w.r.t x^(2)+y^(2)=18 is

Show that the equation of the circles touching the Y-axis at (0,3) and making an intercept of 8 units on X-axis are x^(2)+y^(2)-10x-6y+9=0

The mid point of the chord x-2y+7=0 w.r.t the circle x^(2)+y^(2)-2x-10y+1=0 is

The intercept made by the circle x^(2)+y^(2)+4x-8y+c=0 on x-axis is 2sqrt(10) then c=

If kx+3y=1, 2x+y+5=0 are conjugate liens w.r.t the circle x^(2)+y^(2)-2x-4y-4=0 then k=

Locate the position of the point (2,4) w.r.t the circle x^(2)+y^(2)-5x-6y+11=0

The chord of contact of (3,-1) w.r.t the circle x^(2)+y^(2)+2x-4y+1=0 is