Home
Class 12
MATHS
If the lines 2x+y+12=0, 4x-3y-10=0 are c...

If the lines `2x+y+12=0, 4x-3y-10=0` are conjugate w.r.t the circle with centre `(2,(-3)/2)` then r=

A

`(sqrt(29))/2`

B

`sqrt(29)`

C

`5/2`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the radius \( r \) of the circle given that the lines \( 2x + y + 12 = 0 \) and \( 4x - 3y - 10 = 0 \) are conjugate with respect to the circle centered at \( (2, -\frac{3}{2}) \). ### Step-by-Step Solution: 1. **Identify the lines and their coefficients**: - The first line is \( l_1: 2x + y + 12 = 0 \) with coefficients \( l_1 = 2, m_1 = 1, n_1 = 12 \). - The second line is \( l_2: 4x - 3y - 10 = 0 \) with coefficients \( l_2 = 4, m_2 = -3, n_2 = -10 \). 2. **Identify the center of the circle**: - The center of the circle is given as \( (2, -\frac{3}{2}) \). - From the standard circle equation \( x^2 + y^2 + 2gx + 2fy + c = 0 \), we have \( g = -2 \) and \( f = \frac{3}{2} \). 3. **Use the conjugate condition**: - The condition for two lines to be conjugate with respect to a circle is given by: \[ r^2 (l_1 l_2 + m_1 m_2) = l_1 g + m_1 f - n_1 \cdot (l_2 g + m_2 f - n_2) \] 4. **Calculate \( l_1 l_2 + m_1 m_2 \)**: - \( l_1 l_2 = 2 \cdot 4 = 8 \) - \( m_1 m_2 = 1 \cdot (-3) = -3 \) - Therefore, \( l_1 l_2 + m_1 m_2 = 8 - 3 = 5 \). 5. **Calculate \( l_1 g + m_1 f - n_1 \)**: - \( l_1 g = 2 \cdot (-2) = -4 \) - \( m_1 f = 1 \cdot \frac{3}{2} = \frac{3}{2} \) - So, \( l_1 g + m_1 f - n_1 = -4 + \frac{3}{2} - 12 \). - Converting \( -4 \) and \( -12 \) to halves: \( -4 = -\frac{8}{2} \) and \( -12 = -\frac{24}{2} \). - Thus, \( -\frac{8}{2} + \frac{3}{2} - \frac{24}{2} = -\frac{29}{2} \). 6. **Calculate \( l_2 g + m_2 f - n_2 \)**: - \( l_2 g = 4 \cdot (-2) = -8 \) - \( m_2 f = -3 \cdot \frac{3}{2} = -\frac{9}{2} \) - So, \( l_2 g + m_2 f - n_2 = -8 - \frac{9}{2} + 10 \). - Converting \( -8 \) to halves: \( -8 = -\frac{16}{2} \). - Thus, \( -\frac{16}{2} - \frac{9}{2} + \frac{20}{2} = -\frac{5}{2} \). 7. **Substituting into the conjugate condition**: - We have: \[ r^2 \cdot 5 = -\frac{29}{2} \cdot -\frac{5}{2} \] - This simplifies to: \[ r^2 \cdot 5 = \frac{145}{4} \] - Therefore: \[ r^2 = \frac{145}{20} = \frac{29}{4} \] 8. **Finding the radius \( r \)**: - Taking the square root: \[ r = \sqrt{\frac{29}{4}} = \frac{\sqrt{29}}{2} \] ### Final Answer: The radius \( r \) of the circle is \( \frac{\sqrt{29}}{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines 2x+3y + 11 =0 and 2x-2y-1=0 are conjugate with respect to the circle x^(2) + y^(2) + 4x+ 6y +12 = 0

If kx+3y=1, 2x+y+5=0 are conjugate liens w.r.t the circle x^(2)+y^(2)-2x-4y-4=0 then k=

If 3x+2y=3 and 2x+5y=1 are conjugate lines w.r.t the circle x^(2)+y^(2)=r^(2) then r^(2)=

If 2x+3y=1 and 3x+4y=k are conjugate lines w.r. the circle x^(2)+y^(2)=4 then k=

If the points (k,1) (2,-3) are conjugate w.r.t. x^(2)+y^(2)+4x-6y-12=0 then k

Let the lines 4x-3y+10=0 and 4x-3y-30=0 make equal intercepts of 6 units with a circle (C ) whose centre lies on 2x+y=0 , then the equation of the circle C is

Find the value of k if kx+ 3y - 1 = 0, 2x + y + 5 = 0 are conjugate lines with respect to the circle x^(2) + y^(2) - 2x - 4y - 4 =0 .

If A and B are conjugate points w.r.t to circle x^(2)+y^(2)=r^(2) then OA^(2)+OB^(2)=

If the 4 points made by intersection of lines 2x-y+1=0, x-2y+3=0 with the coordinate axes are concylic then centre of circle is

If (1,2),(3,a) are conjugate points w.r.t x^(2)+y^(2)=16 then a=