Home
Class 12
MATHS
The locus of the point (2+3cos theta, 1+...

The locus of the point `(2+3cos theta, 1+3 sin theta)` when `theta` is parameter is

A

`x^(2)+y^(2)_4x-2y+4=0`

B

`x^(2)+y^(2)-4x-2y-4=0`

C

`x^(2)+y^(2)+4x+2y-4=0`

D

`x^(2)+y^(2)+4x+2y+4=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

cos theta+sqrt(3)sin theta=2

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

The locus of the points of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b , ( theta= variable) is :

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is

The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in

tangents are drawn to x^2+y^2=a^2 at the points A(acos theta, a sin theta) and B(a cos (theta +pi/3), a sin (theta +pi/3)) Locus of intersection of these tangents is