Home
Class 12
MATHS
The parametric equation of the circle x^...

The parametric equation of the circle `x^(2)+y^(2)+8x-6y=0` are

A

`x=4y+5cos theta, y=3+5 sin theta`

B

`x=-4+5cos theta, y=3+5 sin theta`

C

`x=4+5cos theta, y=-3+5 sin theta`

D

`x=-4+5cos thea,y=-3+5sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric equations of the circle given by the equation \(x^2 + y^2 + 8x - 6y = 0\), we will follow these steps: ### Step 1: Rewrite the Circle Equation We start with the equation of the circle: \[ x^2 + y^2 + 8x - 6y = 0 \] We will rearrange it to complete the square for both \(x\) and \(y\). ### Step 2: Complete the Square For \(x\): \[ x^2 + 8x \quad \text{can be rewritten as} \quad (x + 4)^2 - 16 \] For \(y\): \[ y^2 - 6y \quad \text{can be rewritten as} \quad (y - 3)^2 - 9 \] Now substituting these back into the equation gives: \[ (x + 4)^2 - 16 + (y - 3)^2 - 9 = 0 \] This simplifies to: \[ (x + 4)^2 + (y - 3)^2 - 25 = 0 \] Thus, we have: \[ (x + 4)^2 + (y - 3)^2 = 25 \] ### Step 3: Identify the Center and Radius From the equation \((x + 4)^2 + (y - 3)^2 = 25\), we can identify: - Center: \((-4, 3)\) - Radius: \(r = \sqrt{25} = 5\) ### Step 4: Write the Parametric Equations The parametric equations for a circle are given by: \[ x = h + r \cos \theta \] \[ y = k + r \sin \theta \] where \((h, k)\) is the center of the circle. Substituting the center \((-4, 3)\) and radius \(5\) into the parametric equations: \[ x = -4 + 5 \cos \theta \] \[ y = 3 + 5 \sin \theta \] ### Final Parametric Equations Thus, the parametric equations of the circle are: \[ x = -4 + 5 \cos \theta \] \[ y = 3 + 5 \sin \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The parametric equations of the circle x^(2)+y^(2)+2x+4y-11=0 are

Parametric equation of the circle x^(2)+y^(2)=16 are

Find the parametric equation of the circles : x^2 +y^2 =9

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric representation of the circle x^(2) +y^(2) - 2 x - 4 y - 4 = 0

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

Obtain the parametric equation of the circle represented by x^(2) + y^(2) + 6x + 8y- 96= 0