Home
Class 12
MATHS
The length of the latusrectum of the par...

The length of the latusrectum of the parabola `2{(x-a)^(2)+(y-a)^(2)}=(x+y)^(2),` is

Text Solution

Verified by Experts

The correct Answer is:
`2sqrt(2a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the latus rectum of the parabola x^(2) = -28y is

The length of the latusrectum of the parabola x=ay^(2)+by+c, is

Find the length of the latus rectum of the parabola x^(2) = -8y .

The latusrectum of the parabola 13[(x-3)^(2)+(y-4)^(2) ]= (2x-3y+5)^(2)

The length of the latusrectum of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=-1 , is

Find the length of latus rectum of the parabola y^(2) = - 10 x

The equation of the directrix of the parabola 25{(x-2)^(2)+(y+5)^(2)}=(3x+4y-1)^(2), is

The length of the latusrectum of the ellipse 3x^(2)+y^(2)=12 is

STATEMENT-1 : The length of latus rectum of the parabola (x - y + 2)^(2) = 8sqrt(2){x + y - 6} is 8sqrt(2) . and STATEMENT-2 : The length of latus rectum of parabola (y-a)^(2) = 8sqrt(2)(x-b) is 8sqrt(2) .

the length of the latusrectum of the ellipse 3x^(2) + y^(2) = 12 . Is