Home
Class 12
MATHS
If the line x + y = 1 touches the parab...

If the line x + y = 1 touches the parabola `y^(2) = kx` , then the value of k is

A

`-4`

B

4

C

3

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the line 2x - 3y = k touches the parabola y^(2) = 6 x , then the value of k is (i) (27)/(4) (ii) -(27)/(4) (iii) -27 (iv) 27

If the line x + y = 1 touches the parabola y^2-y + x = 0 , then the coordinates of the point of contact are:

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line x+y=a touches the parabola y=x-x^2, then find the value of a .

If the line x+y=a touches the parabola y=x-x^2, then find the value of adot

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

If the line y=m x+1 is tangent to the parabola y^2=4x , then find the value of m .

Show that the line x + y = 1 touches the parabola y = x-x ^(2).

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is