Home
Class 12
MATHS
The equation 16x^(2)+y^(2) +8xy-74x-78y...

The equation ` 16x^(2)+y^(2) +8xy-74x-78y+212 =0` represents

A

a circle

B

a parabola

C

an ellipse

D

hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of conic section represented by the equation \( 16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0 \), we will follow these steps: ### Step 1: Identify the coefficients The given equation can be compared to the general form of a conic section: \[ ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0 \] From the equation, we identify: - \( a = 16 \) - \( b = 1 \) - \( 2h = 8 \) → \( h = 4 \) - \( 2g = -74 \) → \( g = -37 \) - \( 2f = -78 \) → \( f = -39 \) - \( c = 212 \) ### Step 2: Calculate the determinant (Δ) The determinant \( \Delta \) is calculated using the formula: \[ \Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} \] Substituting the values: \[ \Delta = \begin{vmatrix} 16 & 4 & -37 \\ 4 & 1 & -39 \\ -37 & -39 & 212 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \Delta = 16 \begin{vmatrix} 1 & -39 \\ -39 & 212 \end{vmatrix} - 4 \begin{vmatrix} 4 & -39 \\ -37 & 212 \end{vmatrix} - 37 \begin{vmatrix} 4 & 1 \\ -37 & -39 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -39 \\ -39 & 212 \end{vmatrix} = (1)(212) - (-39)(-39) = 212 - 1521 = -1309 \) 2. \( \begin{vmatrix} 4 & -39 \\ -37 & 212 \end{vmatrix} = (4)(212) - (-39)(-37) = 848 - 1443 = -595 \) 3. \( \begin{vmatrix} 4 & 1 \\ -37 & -39 \end{vmatrix} = (4)(-39) - (1)(-37) = -156 + 37 = -119 \) Now substituting back into the determinant: \[ \Delta = 16(-1309) - 4(-595) - 37(-119) \] Calculating: \[ \Delta = -20944 + 2380 + 4403 = -14050 \] ### Step 4: Calculate \( h^2 - ab \) Next, we calculate \( h^2 - ab \): \[ h^2 - ab = 4^2 - (16)(1) = 16 - 16 = 0 \] ### Step 5: Determine the type of conic Now we analyze the results: - \( \Delta \neq 0 \) (since \(-14050 \neq 0\)) - \( h^2 - ab = 0 \) According to the conic section classification: - If \( \Delta \neq 0 \) and \( h^2 - ab = 0 \), the conic section is a **parabola**. ### Conclusion The equation \( 16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0 \) represents a **parabola**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 16 x^2+y^2+8x y-74 x-78 y+212=0 represents a. a circle b. a parabola c. an ellipse d. a hyperbola

The equation 16x^(2) - 3y^(2) - 32x - 12y - 44 = 0 represents a hyperbola, which one of the following is /are correct

The equation x^(2) + 4xy + 4y ^(2) - 3x - 6 = 0 represents

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

The equation x^(2) + y^(2) - 2xy -1 =0 represents :

Find the values of k, if the equation 8x^(2)-16xy + ky^(2) - 22x + 34y = 12 respresents an ellipse.

If the equation 2x^(2)+7xy+3y^(2)-9x-7y+k=0 represents a pair of lines, then k is equal to

Show that the equation 3x^(2)+4y^(2)-12x-8y+4=0 represents an ellipse. Find the focus also

The equation x^(3)+x^(2)y-xy^(2)-y^(3)=0 represents three straight lines passing through the origin such that

Show that the equation x^2-2y^2-2x+8y-1=0 represents a hyperbola.