Home
Class 12
MATHS
The straight line x+y= k touches the par...

The straight line x+y= k touches the parabola `y=x-x^(2)` then k =

A

a) 0

B

b)`-1`

C

c) 1

D

d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the line \( x + y = k \) touches the parabola \( y = x - x^2 \). ### Step-by-Step Solution: 1. **Rewrite the line equation**: The equation of the line can be rewritten as: \[ y = k - x \] (This is our Equation 1). 2. **Set the equations equal**: Since the line touches the parabola, we can substitute \( y \) from Equation 1 into the parabola's equation: \[ k - x = x - x^2 \] 3. **Rearrange the equation**: Rearranging gives us: \[ x^2 - 2x + k = 0 \] (This is our Equation 2). 4. **Identify coefficients**: The quadratic equation is in the form \( ax^2 + bx + c = 0 \) where: - \( a = 1 \) - \( b = -2 \) - \( c = k \) 5. **Use the condition for tangency**: For the line to touch the parabola, the discriminant of the quadratic equation must be zero. The discriminant \( D \) is given by: \[ D = b^2 - 4ac \] Substituting the values: \[ D = (-2)^2 - 4(1)(k) = 4 - 4k \] 6. **Set the discriminant to zero**: For the line to touch the parabola, we set the discriminant equal to zero: \[ 4 - 4k = 0 \] 7. **Solve for \( k \)**: Rearranging gives: \[ 4k = 4 \implies k = 1 \] ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I Straight line x+y=k touch the parabola y=x-x^2 , if k=1. Statement II Discriminant of (x-1)^2=x-x^2 is zero.

Assertion(A) : If the line x = 3y+k touches the parabola 3y^(2) = 4x then k = 5 Reason (R) : Equation to the tangent y^(2)= 8x inclimed at an angle 30^(@) to the axis is x- sqrt(3)y+6=0

Show that the line x + y = 1 touches the parabola y = x-x ^(2).

Find the condition that the straight line y = mx + c touches the hyperbola x^(2) - y^(2) = a^(2) .

If the line x+y=a touches the parabola y=x-x^2, then find the value of a .

If the line x+y=a touches the parabola y=x-x^2, then find the value of adot

If the line x + y = 1 touches the parabola y^(2) = kx , then the value of k is

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line 2x - 3y = k touches the parabola y^(2) = 6 x , then the value of k is (i) (27)/(4) (ii) -(27)/(4) (iii) -27 (iv) 27