Home
Class 12
MATHS
If the line y=mx+c touches the parabola ...

If the line y=mx+c touches the parabola `y^(2)=4a(x+a)`, then

A

`c= a (m+(1)/(4))`

B

`c=a (m-(1)/(m))`

C

`c = (a)/(m)`

D

`a=(m-(1)/(m))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x + y = 1 touches the parabola y^(2) = kx , then the value of k is

If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one value of m(m gt0) , then the value of (c+m)/(c-m) is equal to

If the line 2x - 3y = k touches the parabola y^(2) = 6 x , then the value of k is (i) (27)/(4) (ii) -(27)/(4) (iii) -27 (iv) 27

If the line y=mx+c is a normal to the parabola y^2=4ax , then c is

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

Statement 1: The line y=x+2a touches the parabola y^2=4a(x+a) Statement 2: The line y=m x+a m+a/m touches y^2=4a(x+a) for all real values of mdot

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m c=a+a/m (d) none of these

If the line x + y = 1 touches the parabola y^2-y + x = 0 , then the coordinates of the point of contact are: