Home
Class 12
MATHS
The area of triangle formed by tangents ...

The area of triangle formed by tangents at the parametrie points `t_(1),t_(2)` and `t_(3)`, on `y^(2) = 4ax` is k`|(t_(1)-t_(2)) (t_(2)-t_(1)) (t_(3)-t_(1))|` then K =

A

`(a^(2))/(2)`

B

`a^(2)`

C

`2a^(2)`

D

`4a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the area of the triangle formed by the tangents at the parametric points \( t_1, t_2, \) and \( t_3 \) on the parabola \( y^2 = 4ax \), we can follow these steps: ### Step 1: Identify the points on the parabola The points on the parabola corresponding to the parameters \( t_1, t_2, \) and \( t_3 \) are given by: - \( P_1(t_1) = (at_1^2, 2at_1) \) - \( P_2(t_2) = (at_2^2, 2at_2) \) - \( P_3(t_3) = (at_3^2, 2at_3) \) ### Step 2: Write the equations of the tangents The equation of the tangent to the parabola at a point \( (at^2, 2at) \) is given by: \[ yy_1 = 2a(x + x_1) \] For the points \( P_1, P_2, \) and \( P_3 \), the equations of the tangents are: - For \( P_1(t_1) \): \( yy_1 = 2a(x + at_1^2) \) - For \( P_2(t_2) \): \( yy_2 = 2a(x + at_2^2) \) - For \( P_3(t_3) \): \( yy_3 = 2a(x + at_3^2) \) ### Step 3: Set up the area formula The area \( A \) of the triangle formed by the tangents can be calculated using the determinant formula: \[ A = \frac{1}{2} \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \] Substituting the coordinates of the points: \[ A = \frac{1}{2} \left| \begin{array}{ccc} at_1^2 & 2at_1 & 1 \\ at_2^2 & 2at_2 & 1 \\ at_3^2 & 2at_3 & 1 \end{array} \right| \] ### Step 4: Calculate the determinant Calculating the determinant, we have: \[ A = \frac{1}{2} \left| a \begin{array}{ccc} t_1^2 & 2t_1 & 1 \\ t_2^2 & 2t_2 & 1 \\ t_3^2 & 2t_3 & 1 \end{array} \right| \] Factoring out \( a \): \[ A = \frac{a}{2} \left| \begin{array}{ccc} t_1^2 & 2t_1 & 1 \\ t_2^2 & 2t_2 & 1 \\ t_3^2 & 2t_3 & 1 \end{array} \right| \] ### Step 5: Evaluate the determinant Using the properties of determinants, we can simplify: \[ \left| \begin{array}{ccc} t_1^2 & 2t_1 & 1 \\ t_2^2 & 2t_2 & 1 \\ t_3^2 & 2t_3 & 1 \end{array} \right| = 2(t_1 - t_2)(t_2 - t_3)(t_3 - t_1) \] Thus, we can express the area as: \[ A = \frac{a}{2} \cdot 2(t_1 - t_2)(t_2 - t_3)(t_3 - t_1) = a(t_1 - t_2)(t_2 - t_3)(t_3 - t_1) \] ### Step 6: Relate area to the given expression The problem states that the area can be expressed as: \[ A = k |(t_1 - t_2)(t_2 - t_3)(t_3 - t_1)| \] From our calculations, we have: \[ A = a |(t_1 - t_2)(t_2 - t_3)(t_3 - t_1)| \] Thus, we can equate: \[ k = a \] ### Conclusion The value of \( k \) is \( a \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Area of the triangle formed by the threepoints 't_1'. 't_2' and 't_3' on y^2=4ax is K|(t_1-t_2) (t_2-t_3)(t_3-t_1)| then K=

If the tangents at and t_(1) and t_(2) = on y^(2)=4ax meets on its axis then

Show that the area formed by the normals to y^2=4ax at the points t_1,t_2,t_3 is

If the tangents at t_(1) and t_(2) on y^(2) = 4ax are at right angles if

If the tangents at t_(1) and t_(2) on y^(2) = 4ax makes complimentary angles with axis then t_(1)t_(2) =

Statement :1 If a parabola y ^(2) = 4ax intersects a circle in three co-normal points then the circle also passes through the vertex of the parabola. Because Statement : 2 If the parabola intersects circle in four points t _(1), t_(2), t_(3) and t_(4) then t _(1) + t_(2) + t_(3) +t_(4) =0 and for co-normal points t _(1), t_(2) , t_(3) we have t_(1)+t_(2) +t_(3)=0.

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

If the tangents at t_(1) and t_(2) on y^(2) =4ax meet on the directrix then

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If the chord joining t_(1) and t_(2) on the parabola y^(2) = 4ax is a focal chord then