Home
Class 12
MATHS
If the foci of the ellips (x^(2))/( 25)...

If the foci of the ellips ` (x^(2))/( 25)+ ( y^(2))/( 16) =1 `and the hyperbola ` (x^(2))/(4) - ( y^(2))/( b^(2) ) =1` coincide ,then `b^(2)=`

A

a) 4

B

b) 5

C

c) 8

D

d) 9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b^2 \) given that the foci of the ellipse and the hyperbola coincide. ### Step-by-Step Solution: 1. **Identify the parameters of the ellipse:** The equation of the ellipse is given as: \[ \frac{x^2}{25} + \frac{y^2}{16} = 1 \] Here, \( a^2 = 25 \) and \( b^2 = 16 \). Thus, we have: \[ a = \sqrt{25} = 5 \] 2. **Calculate the foci of the ellipse:** The foci of an ellipse are given by the coordinates \( (\pm c, 0) \), where \( c = \sqrt{a^2 - b^2} \). \[ c = \sqrt{25 - 16} = \sqrt{9} = 3 \] Therefore, the foci of the ellipse are at: \[ (\pm 3, 0) \] 3. **Identify the parameters of the hyperbola:** The equation of the hyperbola is given as: \[ \frac{x^2}{4} - \frac{y^2}{b^2} = 1 \] Here, \( a^2 = 4 \) and we need to find \( b^2 \). 4. **Calculate the foci of the hyperbola:** The foci of a hyperbola are given by the coordinates \( (\pm c, 0) \), where \( c = \sqrt{a^2 + b^2} \). \[ c = \sqrt{4 + b^2} \] 5. **Set the foci of the ellipse and hyperbola equal:** Since the foci of the ellipse and hyperbola coincide, we have: \[ \sqrt{4 + b^2} = 3 \] 6. **Square both sides to eliminate the square root:** \[ 4 + b^2 = 9 \] 7. **Solve for \( b^2 \):** \[ b^2 = 9 - 4 = 5 \] ### Final Answer: Thus, the value of \( b^2 \) is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The ellipse (x^(2))/(25)+(y^(2))/(16)=1 and the hyperbola (x^(2))/(25)-(y^(2))/(16) =1 have in common

The Foci of the ellipse (x^(2))/(16)+(y^(2))/(25)=1 are

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide write the value of b^2dot

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value

The foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbla (x^2)/(144)-(y^2)/(81)=(1)/(25) coincide. Then, the value of b^(2) is

What are the foci of the hyperbola x^(2)/(36)-y^(2)/(16)=1

the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 is

If the eccentricites of the ellipse x^(2)/4+y^(2)/3=1 and the hyperbola x^(2)/64-y^(2)/b^(2)=1 are reciprocals of each other, then b^(2) is equal to

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to