Home
Class 12
MATHS
The eccentricity of x^(2)/9-y^(2)/(16)=1...

The eccentricity of `x^(2)/9-y^(2)/(16)=1` is

A

`(17)/(16)`

B

`5/4`

C

`5/3`

D

`sqrt7/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the hyperbola given by the equation \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \), we can follow these steps: ### Step 1: Identify the standard form of the hyperbola The given equation is \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \). This is in the standard form of a hyperbola, which is \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). ### Step 2: Determine the values of \( a^2 \) and \( b^2 \) From the equation \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \), we can identify: - \( a^2 = 9 \) - \( b^2 = 16 \) ### Step 3: Calculate \( a \) and \( b \) Now, we find \( a \) and \( b \): - \( a = \sqrt{9} = 3 \) - \( b = \sqrt{16} = 4 \) ### Step 4: Use the formula for eccentricity The formula for the eccentricity \( e \) of a hyperbola is given by: \[ e = \sqrt{1 + \frac{b^2}{a^2}} \] ### Step 5: Substitute the values of \( a^2 \) and \( b^2 \) Substituting the values we found: \[ e = \sqrt{1 + \frac{16}{9}} \] ### Step 6: Simplify the expression First, calculate \( \frac{16}{9} \): \[ e = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{9}{9} + \frac{16}{9}} = \sqrt{\frac{25}{9}} \] ### Step 7: Final calculation of eccentricity Now, we can simplify: \[ e = \frac{\sqrt{25}}{\sqrt{9}} = \frac{5}{3} \] ### Conclusion Thus, the eccentricity of the hyperbola \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \) is \( \frac{5}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the eccentricity of hyperbola x^(2)-9y^(2)=1 .

The eccentricity of te ellipse (x^(2))/(16) + (y^(2))/(4) = 1 is _______

The eccentricity of the hyperbola x^(2)-y^(2)=9 is

The eccentricity of the ellipse 5x^2+9y^2=1 is a. 2//3 b. 3//4 c. 4//5 d. 1//2

The eccentricity of the ellipse 5x^2+9y^2=1 is a. 2//3 b. 3//4 c. 4//5 d. 1//2

The eccentricity of the ellipse (x-1)^(2)/(16)+(y-2)^(2)/(9)=1 is

The eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(25) =1 is

the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 is

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to

If e_(1) and e_(2) represent the eccentricity of the curves 6x^(2) - 9y^(2) = 144 and 9x^(2) - 16y^(2) = 144 respectively . Then (1)/(e_(1)^(2)) + (1)/(e_(2)^(2)) is equal to