Home
Class 12
MATHS
If the normal at 'theta' on the hyperbol...

If the normal at `'theta'` on the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` meets the transverse axis at `G`, and `A` and `A'` are the vertices of the hyperbola , then `AC.A'G=` (a) `a^2(e^4 sec^2 theta-1)` (b) `a^2(e^4 tan^2 theta-1)` (c) `b^2(e^4 sec^2 theta-1)` (d) `b^2(e^4 sec^2 theta+1)`

A

`a^2(e^(4) sec^(2) theta-1)`

B

`a^(2)(e^(4) sec^(2) theta+1)`

C

`b^(2)(e^(4) sec^(2) theta-1)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

Prove: (sec^2theta-1)(cos e c^2theta-1)=1

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

If the normals at P(theta) and Q(pi/2+theta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 meet the major axis at Ga n dg, respectively, then P G^2+Qg^2= b^2(1-e^2)(2-e)^2 a^2(e^4-e^2+2) a^2(1+e^2)(2+e^2) b^2(1+e^2)(2+e^2)

Tangents to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angle theta_(1), theta_(2) with transvrse axis of a hyperbola. Show that the points of intersection of these tangents lies on the curve 2xy=k(x^(2)-a^(2)) when tan theta_(1)+ tan theta_(2)=k

If the tangent at the point (2sec theta,3tan theta) to the hyperbola (x^(2))/(4)-(y^(2))/(9)=1 is parallel to 3x-4y+4=0 , then the value of theta , is

If the tangent at the point (2sec theta,3tan theta) to the hyperbola (x^(2))/(4)-(y^(2))/(9)=1 is parallel to 3x-y+4=0 , then the value of theta , is

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta