Home
Class 12
MATHS
If 2x^(2)+5xy+2y^(2)-11x-7y+K=0 is the p...

If `2x^(2)+5xy+2y^(2)-11x-7y+K=0` is the pair of asymptotes of the hyperbola `2x^(2)+5xy+2y^(2)-11x-7y-4=0` then K=

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( K \) such that the equation \( 2x^2 + 5xy + 2y^2 - 11x - 7y + K = 0 \) represents the pair of asymptotes of the hyperbola given by \( 2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0 \), we can follow these steps: ### Step 1: Identify the coefficients of the hyperbola equation The hyperbola equation is: \[ 2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0 \] From this, we can identify the coefficients: - \( a = 2 \) - \( b = 2 \) - \( c = -4 \) - \( g = -\frac{11}{2} \) - \( f = -\frac{7}{2} \) - \( h = \frac{5}{2} \) ### Step 2: Compare the asymptote equation The asymptote equation is: \[ 2x^2 + 5xy + 2y^2 - 11x - 7y + K = 0 \] From this, we can identify the coefficients: - \( a = 2 \) - \( b = 2 \) - \( c = K \) - \( g = -\frac{11}{2} \) - \( f = -\frac{7}{2} \) - \( h = \frac{5}{2} \) ### Step 3: Use the condition for asymptotes For the equation to represent the pair of asymptotes of the hyperbola, the following condition must hold: \[ abc + 2fgh - af^2 - bg^2 - ch^2 = 0 \] Substituting the values we have: - \( a = 2 \) - \( b = 2 \) - \( c = K \) - \( f = -\frac{7}{2} \) - \( g = -\frac{11}{2} \) - \( h = \frac{5}{2} \) ### Step 4: Substitute and simplify Substituting these values into the condition: \[ 2 \cdot 2 \cdot K + 2 \left(-\frac{7}{2}\right) \left(-\frac{11}{2}\right) \left(\frac{5}{2}\right) - 2 \left(-\frac{7}{2}\right)^2 - 2 \left(-\frac{11}{2}\right)^2 - K \left(\frac{5}{2}\right)^2 = 0 \] Calculating each term: 1. \( 2 \cdot 2 \cdot K = 4K \) 2. \( 2 \left(-\frac{7}{2}\right) \left(-\frac{11}{2}\right) \left(\frac{5}{2}\right) = 2 \cdot \frac{77}{4} \cdot \frac{5}{2} = \frac{385}{4} \) 3. \( -2 \left(-\frac{7}{2}\right)^2 = -2 \cdot \frac{49}{4} = -\frac{98}{4} \) 4. \( -2 \left(-\frac{11}{2}\right)^2 = -2 \cdot \frac{121}{4} = -\frac{242}{4} \) 5. \( -K \left(\frac{5}{2}\right)^2 = -K \cdot \frac{25}{4} \) Putting it all together: \[ 4K + \frac{385}{4} - \frac{98}{4} - \frac{242}{4} - \frac{25K}{4} = 0 \] Combine the constants: \[ 4K - \frac{25K}{4} + \frac{385 - 98 - 242}{4} = 0 \] This simplifies to: \[ 4K - \frac{25K}{4} + \frac{45}{4} = 0 \] Multiply through by 4 to eliminate the fraction: \[ 16K - 25K + 45 = 0 \] Combine like terms: \[ -9K + 45 = 0 \] Solving for \( K \): \[ 9K = 45 \implies K = 5 \] ### Final Answer Thus, the value of \( K \) is \( \boxed{5} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The equations of the asymptotes of the hyperbola 2x^(2)+5xy+2y^(2)-11x-7y-4=0 are

Find the asymptotes of the hyperola. 2x^(2)-xy-y^(2)+2x-2y+2=0

The asymptotes of the hyperbola 6x^(2) +13xy +6y^(2) -7x -8y-26 =0 are

The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0 , is

Find the equation of the asymptotes of the hyperbola 3x^2+10 x y+9y^2+14 x+22 y+7=0

The combined equation of the asymptotes of the hyperbola 2x^2 + 5xy + 2y^2 + 4x + 5y = 0 is -

The equation of a hyperbola conjugate to the hyperbola x^(2)+3xy+2y^(2)+2x+3y=0 is

The point of contact of 9x+8y-11=0 to the hyperbola 3x^(2)-4y^(2)=11 is

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

The eccentricity of the conic represented by 2x^2+5xy+2y^2+11x-7y-4=0 is