Home
Class 12
MATHS
If e is the eccentricity, l is the semi ...

If e is the eccentricity, l is the semi latus-rectum and S. `S^(1)` are foci of the hyperbola `9x^(2)-16y^(2)+72x-32y=16` then ascending order of l, e `SS^(1)` is

A

`1,e,SS^(1)`

B

`e,1,SS^(1)`

C

`e,SS^(1),l`

D

`SS^(1),l,e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the hyperbola \(9x^2 - 16y^2 + 72x - 32y = 16\) and find the eccentricity \(e\), the semi-latus rectum \(l\), and the distance between the foci \(SS'\). Finally, we will arrange these values in ascending order. ### Step 1: Rewrite the Hyperbola in Standard Form We start with the equation of the hyperbola: \[ 9x^2 - 16y^2 + 72x - 32y = 16 \] First, we rearrange the equation: \[ 9(x^2 + 8x) - 16(y^2 + 2y) = 16 \] Next, we complete the square for the \(x\) and \(y\) terms. For \(x^2 + 8x\): \[ x^2 + 8x = (x + 4)^2 - 16 \] For \(y^2 + 2y\): \[ y^2 + 2y = (y + 1)^2 - 1 \] Substituting these back into the equation gives: \[ 9((x + 4)^2 - 16) - 16((y + 1)^2 - 1) = 16 \] \[ 9(x + 4)^2 - 144 - 16(y + 1)^2 + 16 = 16 \] \[ 9(x + 4)^2 - 16(y + 1)^2 - 128 = 16 \] \[ 9(x + 4)^2 - 16(y + 1)^2 = 144 \] Dividing through by 144: \[ \frac{(x + 4)^2}{16} - \frac{(y + 1)^2}{9} = 1 \] This is the standard form of the hyperbola. ### Step 2: Identify Parameters From the standard form \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1\): - \(a^2 = 16 \Rightarrow a = 4\) - \(b^2 = 9 \Rightarrow b = 3\) ### Step 3: Calculate Eccentricity \(e\) The eccentricity \(e\) of a hyperbola is given by: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4} \] ### Step 4: Calculate Semi-latus Rectum \(l\) The semi-latus rectum \(l\) is given by: \[ l = \frac{b^2}{a} = \frac{9}{4} \] ### Step 5: Calculate Distance Between Foci \(SS'\) The distance between the foci \(SS'\) is given by: \[ SS' = 2c \quad \text{where} \quad c = \sqrt{a^2 + b^2} \] Calculating \(c\): \[ c = \sqrt{16 + 9} = \sqrt{25} = 5 \] Thus, \[ SS' = 2c = 10 \] ### Step 6: Arrange in Ascending Order Now we have: - \(l = \frac{9}{4} = 2.25\) - \(e = \frac{5}{4} = 1.25\) - \(SS' = 10\) Arranging these in ascending order: \[ e < l < SS' \] ### Final Answer The ascending order of \(l\), \(e\), and \(SS'\) is: \[ e < l < SS' \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is

What are the foci of the hyperbola x^(2)/(36)-y^(2)/(16)=1

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

Find the axes, eccentricity, latus rectum and the coordinates of the foci of the hyperbola 25 x^2-36 y^2=225.

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

Write the eccentricity of the hyperbola 9x^2-16 y^2=144.

Find the centre, focus, eccentricity and length of latus rectum of the hyperbola 16x^(2)-9y^(2)=144 .

Write the coordinates of the foci of the hyperbola 9x^2-16 y^2=144.

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is