Home
Class 12
MATHS
The foci of the hyperbola 9x^(2) -16y ^...

The foci of the hyperbola ` 9x^(2) -16y ^(2)+18x +32 y- 151=0 ` are

A

(2,1), (-6,1)

B

(-2,5), (-2,3)

C

(4,1), (-6,1)

D

(-2,4), (-2,-2)

Text Solution

AI Generated Solution

The correct Answer is:
To find the foci of the hyperbola given by the equation \( 9x^{2} - 16y^{2} + 18x + 32y - 151 = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation Start by rearranging the terms in the equation: \[ 9x^{2} + 18x - 16y^{2} + 32y - 151 = 0 \] ### Step 2: Completing the Square Next, we will complete the square for the \(x\) and \(y\) terms. 1. For \(x\): \[ 9(x^{2} + 2x) = 9((x + 1)^{2} - 1) = 9(x + 1)^{2} - 9 \] 2. For \(y\): \[ -16(y^{2} - 2y) = -16((y - 1)^{2} - 1) = -16(y - 1)^{2} + 16 \] Substituting these back into the equation gives: \[ 9((x + 1)^{2} - 1) - 16((y - 1)^{2} - 1) - 151 = 0 \] This simplifies to: \[ 9(x + 1)^{2} - 16(y - 1)^{2} - 9 + 16 - 151 = 0 \] \[ 9(x + 1)^{2} - 16(y - 1)^{2} - 144 = 0 \] ### Step 3: Setting the Equation to Standard Form Rearranging gives: \[ 9(x + 1)^{2} - 16(y - 1)^{2} = 144 \] Dividing the entire equation by 144 results in: \[ \frac{(x + 1)^{2}}{16} - \frac{(y - 1)^{2}}{9} = 1 \] ### Step 4: Identifying Parameters From the standard form of the hyperbola: \[ \frac{(x - h)^{2}}{a^{2}} - \frac{(y - k)^{2}}{b^{2}} = 1 \] we identify: - \(h = -1\), \(k = 1\) - \(a^{2} = 16 \Rightarrow a = 4\) - \(b^{2} = 9 \Rightarrow b = 3\) ### Step 5: Finding the Foci The foci of a hyperbola are given by the formula: \[ c = \sqrt{a^{2} + b^{2}} = \sqrt{16 + 9} = \sqrt{25} = 5 \] The coordinates of the foci are: \[ (h \pm c, k) = (-1 \pm 5, 1) \] This gives us the foci: \[ (-1 + 5, 1) = (4, 1) \quad \text{and} \quad (-1 - 5, 1) = (-6, 1) \] ### Final Answer The foci of the hyperbola are: \[ (4, 1) \quad \text{and} \quad (-6, 1) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is

The length of the conjugate axis of the hyperbola 9x^(2) -16y^(2) - 18x -64y + 89 =0 is a) 8 b) 6 c) 4 d) 5

The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

Find the centre, eccentricity and foci of the hyperbola, 9x^2 - 16y^2 - 18x - 64y-199 = 0

If e is the eccentricity, l is the semi latus-rectum and S. S^(1) are foci of the hyperbola 9x^(2)-16y^(2)+72x-32y=16 then ascending order of l, e SS^(1) is

Find the coordinates of the centre , foci, and ends points of latus rectum of the hyperbola 9x^(2)-16y^(2)+18x-64y-199=0 . Also find the length of axes.

The foci of the hyperbola 9x^2-16 y^2=144 are a. (+-4,0) b. (0,+-4) c. (+-5,0) d. (0,+-5)