Home
Class 12
MATHS
The length of the latus rectum of the hy...

The length of the latus rectum of the hyperbola ` 9x^(2) -16y^(2) +72x -32y- 16 =0 ` is

A

`9//2`

B

`32//3`

C

`11//5`

D

`21//5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the latus rectum of the hyperbola given by the equation \( 9x^2 - 16y^2 + 72x - 32y - 16 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation in standard form We start with the equation: \[ 9x^2 - 16y^2 + 72x - 32y - 16 = 0 \] Rearranging gives us: \[ 9x^2 + 72x - 16y^2 - 32y = 16 \] ### Step 2: Complete the square for \(x\) and \(y\) **For \(x\):** Factor out the coefficient of \(x^2\): \[ 9(x^2 + 8x) - 16y^2 - 32y = 16 \] Complete the square for \(x\): \[ x^2 + 8x = (x + 4)^2 - 16 \] Thus, we have: \[ 9((x + 4)^2 - 16) - 16y^2 - 32y = 16 \] This simplifies to: \[ 9(x + 4)^2 - 144 - 16y^2 - 32y = 16 \] **For \(y\):** Factor out the coefficient of \(y^2\): \[ -16(y^2 + 2y) = -16((y + 1)^2 - 1) = -16(y + 1)^2 + 16 \] Substituting back, we get: \[ 9(x + 4)^2 - 144 - 16(y + 1)^2 + 16 = 16 \] Combining the constants gives: \[ 9(x + 4)^2 - 16(y + 1)^2 - 112 = 0 \] ### Step 3: Rearranging to standard hyperbola form Now, we can rearrange: \[ 9(x + 4)^2 - 16(y + 1)^2 = 112 \] Dividing through by 112 gives: \[ \frac{(x + 4)^2}{\frac{112}{9}} - \frac{(y + 1)^2}{\frac{112}{16}} = 1 \] ### Step 4: Identify \(a^2\) and \(b^2\) From the equation, we identify: \[ a^2 = \frac{112}{9}, \quad b^2 = \frac{112}{16} \] ### Step 5: Calculate the length of the latus rectum The formula for the length of the latus rectum \(L\) of a hyperbola is given by: \[ L = \frac{2b^2}{a} \] First, we need to find \(a\): \[ a = \sqrt{\frac{112}{9}} = \frac{4\sqrt{7}}{3} \] Now calculate \(b^2\): \[ b^2 = \frac{112}{16} = 7 \] Thus: \[ L = \frac{2 \cdot 7}{\frac{4\sqrt{7}}{3}} = \frac{14 \cdot 3}{4\sqrt{7}} = \frac{42}{4\sqrt{7}} = \frac{21}{2\sqrt{7}} = \frac{21\sqrt{7}}{14} = \frac{3\sqrt{7}}{2} \] ### Final Answer The length of the latus rectum of the hyperbola is: \[ \frac{21}{2\sqrt{7}} \text{ or } \frac{3\sqrt{7}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the latus rectum of the hyperbola x^(2) -4y^(2) =4 is

The length of the latus rectum of the hyperbola 25x^(2)-16y^(2)=400 is

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

Find the latus-rectum of the hyperbola x^2−4y^2=4

The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is

Write the length of the latus rectum of the hyperbola 16 x^2-9y^2=144.

Write the length o the latus rectum of the hyperbola 16 x^2-9y^2=144.

Find the axes, vertices, foci, eccentricity, equations of the directrices, and length of the latus rectum of the hyperbola 9x ^(2) - 16 y ^(2) = 144.

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola 49y ^(2) - 16x ^(2) = 784