Home
Class 12
MATHS
If the line x Cos alpha+y Sin alpha=p to...

If the line x `Cos alpha+y Sin alpha=p` touches `x^(2)/a^(2)-y^(2)/b^(2)=1` then `a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=`

A

`2p^2`

B

`p^2`

C

p

D

2p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \) given that the line \( x \cos \alpha + y \sin \alpha = p \) touches the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). ### Step-by-Step Solution: 1. **Identify the Tangent Condition**: The line \( x \cos \alpha + y \sin \alpha = p \) touches the hyperbola. This means that at the point of tangency, the line and the hyperbola share the same slope. 2. **Equation of the Tangent to the Hyperbola**: The equation of the tangent to the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) at the point \( (x_1, y_1) \) is given by: \[ \frac{x x_1}{a^2} - \frac{y y_1}{b^2} = 1 \] 3. **Express the Point of Tangency**: Since the line touches the hyperbola, we can express the coordinates of the point of tangency \( (x_1, y_1) \) in terms of \( p \): \[ x_1 = a^2 \cos \alpha / p, \quad y_1 = b^2 \sin \alpha / p \] 4. **Substituting into the Tangent Equation**: Substitute \( x_1 \) and \( y_1 \) into the tangent equation: \[ \frac{x \left(\frac{a^2 \cos \alpha}{p}\right)}{a^2} - \frac{y \left(\frac{b^2 \sin \alpha}{p}\right)}{b^2} = 1 \] Simplifying gives: \[ \frac{x \cos \alpha}{p} - \frac{y \sin \alpha}{p} = 1 \] 5. **Rearranging the Equation**: Multiply through by \( p \): \[ x \cos \alpha - y \sin \alpha = p \] This confirms that the line \( x \cos \alpha + y \sin \alpha = p \) is indeed tangent to the hyperbola. 6. **Finding the Relationship**: From the tangency condition, we can derive: \[ a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2 \] 7. **Conclusion**: Therefore, we conclude that: \[ a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2 \] ### Final Answer: \[ a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

The line x cos alpha +y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

The line x cos alpha + y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9) =1 , then the value of alpha is