Home
Class 12
MATHS
Find the area enclosed with in the curve...

Find the area enclosed with in the curve
`y=sin 2x , y=sqrt(3) sin x , x=0 ,x=(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area enclosed within the curves \( y = \sin 2x \), \( y = \sqrt{3} \sin x \), and the vertical lines \( x = 0 \) and \( x = \frac{\pi}{6} \), we will follow these steps: ### Step 1: Set the equations equal to find intersection points We start by equating the two functions: \[ \sin 2x = \sqrt{3} \sin x \] Using the double angle identity, we can rewrite \( \sin 2x \): \[ 2 \sin x \cos x = \sqrt{3} \sin x \] Assuming \( \sin x \neq 0 \), we can divide both sides by \( \sin x \): \[ 2 \cos x = \sqrt{3} \] Now, solve for \( \cos x \): \[ \cos x = \frac{\sqrt{3}}{2} \] ### Step 2: Find the value of \( x \) The value of \( x \) that satisfies \( \cos x = \frac{\sqrt{3}}{2} \) is: \[ x = \frac{\pi}{6} \] ### Step 3: Set up the integral for the area The area \( A \) between the curves from \( x = 0 \) to \( x = \frac{\pi}{6} \) is given by: \[ A = \int_{0}^{\frac{\pi}{6}} (\sin 2x - \sqrt{3} \sin x) \, dx \] ### Step 4: Integrate the functions Now we will compute the integral: \[ A = \int_{0}^{\frac{\pi}{6}} \sin 2x \, dx - \int_{0}^{\frac{\pi}{6}} \sqrt{3} \sin x \, dx \] Calculating the first integral: \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x \] Thus, \[ \int_{0}^{\frac{\pi}{6}} \sin 2x \, dx = \left[-\frac{1}{2} \cos 2x \right]_{0}^{\frac{\pi}{6}} = -\frac{1}{2} \left( \cos\left(\frac{\pi}{3}\right) - \cos(0) \right) = -\frac{1}{2} \left( \frac{1}{2} - 1 \right) = -\frac{1}{2} \left( -\frac{1}{2} \right) = \frac{1}{4} \] Calculating the second integral: \[ \int \sqrt{3} \sin x \, dx = -\sqrt{3} \cos x \] Thus, \[ \int_{0}^{\frac{\pi}{6}} \sqrt{3} \sin x \, dx = \left[-\sqrt{3} \cos x \right]_{0}^{\frac{\pi}{6}} = -\sqrt{3} \left( \cos\left(\frac{\pi}{6}\right) - \cos(0) \right) = -\sqrt{3} \left( \frac{\sqrt{3}}{2} - 1 \right) = -\sqrt{3} \left( \frac{\sqrt{3}}{2} - \frac{2}{2} \right) = -\sqrt{3} \left( \frac{\sqrt{3} - 2}{2} \right) = \frac{3 - 2\sqrt{3}}{2} \] ### Step 5: Combine the results Now, substituting back into the area formula: \[ A = \frac{1}{4} - \left( \frac{3 - 2\sqrt{3}}{2} \right) \] Simplifying this gives: \[ A = \frac{1}{4} - \frac{3}{2} + \sqrt{3} = \frac{1}{4} - \frac{6}{4} + \frac{2\sqrt{3}}{4} = \frac{1 - 6 + 2\sqrt{3}}{4} = \frac{-5 + 2\sqrt{3}}{4} \] ### Final Answer Thus, the area enclosed is: \[ A = \frac{7}{4} - \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area enclosed with in the curve y=x^(2), y=x^(3)

Find the area enclosed with in the curve y^(2)=3x, x=3

Find the area enclosed with in the curve x^(2)=4y,x=2, y=0

Find the area enclosed with in the curve y=4x-x^(2), y=5-2x

Find the area enclosed with in the curve x=2-5y-3y^(2), x=0

Find the area enclosed by the curves x^2=y , y=x+2,

Find the area enclosed between the curves y^(2)=2x,y=4x-1

Find the area enclosed by the curves y=4x^2 and y^2=2x .

Find the area of the region enclosed by the given curves . y=cosx , y=sin2x , x=0, x=(pi)/(2)

Find the area of the region enclosed by the given curves . y=sinx ,y=cosx , x=0 , x=(pi)/(2)