Home
Class 12
MATHS
Find the area of the region {(x,y)//x^(2...

Find the area of the region `{(x,y)//x^(2)-x-1 le y le -1}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( y \leq x^2 - x - 1 \) and \( y \geq -1 \), we will follow these steps: ### Step 1: Identify the curves and points of intersection We have two curves: 1. \( y = x^2 - x - 1 \) 2. \( y = -1 \) To find the points of intersection, we set the two equations equal to each other: \[ x^2 - x - 1 = -1 \] This simplifies to: \[ x^2 - x = 0 \] Factoring gives: \[ x(x - 1) = 0 \] Thus, the points of intersection are: \[ x = 0 \quad \text{and} \quad x = 1 \] ### Step 2: Sketch the curves The curve \( y = x^2 - x - 1 \) is a parabola that opens upwards, and it intersects the line \( y = -1 \) at the points \( (0, -1) \) and \( (1, -1) \). ### Step 3: Set up the area integral The area we want to find is bounded above by the curve \( y = x^2 - x - 1 \) and below by the line \( y = -1 \) from \( x = 0 \) to \( x = 1 \). The area \( A \) can be expressed as: \[ A = \int_{0}^{1} \left( (x^2 - x - 1) - (-1) \right) \, dx \] This simplifies to: \[ A = \int_{0}^{1} (x^2 - x) \, dx \] ### Step 4: Evaluate the integral Now we compute the integral: \[ A = \int_{0}^{1} (x^2 - x) \, dx = \int_{0}^{1} x^2 \, dx - \int_{0}^{1} x \, dx \] Calculating each integral separately: \[ \int x^2 \, dx = \frac{x^3}{3} \quad \text{and} \quad \int x \, dx = \frac{x^2}{2} \] Evaluating from 0 to 1: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] Thus, we have: \[ A = \frac{1}{3} - \frac{1}{2} \] Finding a common denominator (which is 6): \[ A = \frac{2}{6} - \frac{3}{6} = -\frac{1}{6} \] Since area cannot be negative, we take the absolute value: \[ A = \frac{1}{6} \] ### Final Answer The area of the region is: \[ \boxed{\frac{1}{6}} \text{ square units.} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the region R={(x,y)//x^(2)le y le x} is

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

Find the area of the region {(x, y) : x^(2) + y^(2) le 4, x + y ge 2} , using the method of integration.

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

Using integration, find the area of the following region : {(x, y) : x^(2) + y^(2) lt 1 le x + y}

Find the area of the region {(x , y): x^2+y^2lt=1lt=x+y}dot

Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2} .