Home
Class 12
MATHS
Let f(x)=" max "{x^(2),(1-x)^(2),2x(1-x)...

Let `f(x)=" max "{x^(2),(1-x)^(2),2x(1-x)}` where `0le x le 1`. Determine the area of the region bounded by `y=f(x)`, x-axis, x = 0 and x = 1.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the area of the region bounded by the function \( f(x) = \max\{x^2, (1-x)^2, 2x(1-x)\} \) for \( 0 \leq x \leq 1 \), we will follow these steps: ### Step 1: Identify the Functions We have three functions to consider: 1. \( f_1(x) = x^2 \) 2. \( f_2(x) = (1-x)^2 \) 3. \( f_3(x) = 2x(1-x) \) ### Step 2: Find Points of Intersection To determine which function is the maximum in the interval \( [0, 1] \), we need to find the points of intersection of these functions. 1. **Intersection of \( f_1(x) \) and \( f_2(x) \)**: \[ x^2 = (1-x)^2 \] Expanding and rearranging gives: \[ x^2 = 1 - 2x + x^2 \implies 2x = 1 \implies x = \frac{1}{2} \] 2. **Intersection of \( f_1(x) \) and \( f_3(x) \)**: \[ x^2 = 2x(1-x) \] Rearranging gives: \[ x^2 = 2x - 2x^2 \implies 3x^2 - 2x = 0 \implies x(3x - 2) = 0 \] Thus, \( x = 0 \) or \( x = \frac{2}{3} \). 3. **Intersection of \( f_2(x) \) and \( f_3(x) \)**: \[ (1-x)^2 = 2x(1-x) \] Rearranging gives: \[ 1 - 2x + x^2 = 2x - 2x^2 \implies 3x^2 - 4x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} \] Thus, \( x = 1 \) or \( x = \frac{1}{3} \). ### Step 3: Determine the Maximum Function in Each Interval Now we will analyze the intervals based on the points of intersection \( x = 0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1 \). - **Interval \( [0, \frac{1}{3}] \)**: - At \( x = 0 \): \( f_1(0) = 0, f_2(0) = 1, f_3(0) = 0 \) → max is \( f_2(x) \). - **Interval \( [\frac{1}{3}, \frac{1}{2}] \)**: - At \( x = \frac{1}{3} \): \( f_1(\frac{1}{3}) = \frac{1}{9}, f_2(\frac{1}{3}) = \frac{4}{9}, f_3(\frac{1}{3}) = \frac{4}{9} \) → max is \( f_2(x) \). - **Interval \( [\frac{1}{2}, \frac{2}{3}] \)**: - At \( x = \frac{1}{2} \): \( f_1(\frac{1}{2}) = \frac{1}{4}, f_2(\frac{1}{2}) = \frac{1}{4}, f_3(\frac{1}{2}) = \frac{1}{2} \) → max is \( f_3(x) \). - **Interval \( [\frac{2}{3}, 1] \)**: - At \( x = \frac{2}{3} \): \( f_1(\frac{2}{3}) = \frac{4}{9}, f_2(\frac{2}{3}) = \frac{1}{9}, f_3(\frac{2}{3}) = \frac{4}{9} \) → max is \( f_1(x) \). ### Step 4: Calculate the Area Now we will calculate the area under the curve for each segment: 1. **Area from \( 0 \) to \( \frac{1}{3} \)**: \[ A_1 = \int_0^{\frac{1}{3}} (1-x)^2 \, dx = \left[ x - 2x^2 + \frac{x^3}{3} \right]_0^{\frac{1}{3}} = \left[ \frac{1}{3} - 2 \cdot \frac{1}{9} + \frac{1}{81} \right] = \frac{1}{3} - \frac{2}{9} + \frac{1}{81} = \frac{27 - 18 + 1}{81} = \frac{10}{81} \] 2. **Area from \( \frac{1}{3} \) to \( \frac{1}{2} \)**: \[ A_2 = \int_{\frac{1}{3}}^{\frac{1}{2}} (1-x)^2 \, dx = \left[ x - 2x^2 + \frac{x^3}{3} \right]_{\frac{1}{3}}^{\frac{1}{2}} = \left[ \frac{1}{2} - 2 \cdot \frac{1}{4} + \frac{1}{24} \right] - \frac{10}{81} \] 3. **Area from \( \frac{1}{2} \) to \( \frac{2}{3} \)**: \[ A_3 = \int_{\frac{1}{2}}^{\frac{2}{3}} 2x(1-x) \, dx = \left[ x^2 - \frac{x^3}{3} \right]_{\frac{1}{2}}^{\frac{2}{3}} = \left[ \frac{4}{9} - \frac{8}{81} \right] - \left[ \frac{1}{4} - \frac{1}{24} \right] \] 4. **Area from \( \frac{2}{3} \) to \( 1 \)**: \[ A_4 = \int_{\frac{2}{3}}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{\frac{2}{3}}^{1} = \left[ \frac{1}{3} - \frac{8}{81} \right] \] ### Step 5: Combine Areas Finally, we sum all the areas calculated: \[ \text{Total Area} = A_1 + A_2 + A_3 + A_4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =M a xi mu m {x^2,(1-x)^2,2x(1-x)}, where 0lt=xlt=1. Determine the area of the region bounded by the curves y=f(x) ,x-axis ,x=0, and x=1.

Let f(x)= maximum {x^2, (1-x)^2, 2x(1 - x)} where x in [0, 1]. Determine the area of the region bounded by the curve y=f(x) and the lines y = 0,x=0, x=1.

If f(x) = max {sin x, cos x,1/2}, then the area of the region bounded by the curves y =f(x), x-axis, Y-axis and x=(5pi)/3 is

Let f(x)="max"{sin x,cos x,1/2} , then determine the area of region bounded by the curves y=f(x) , X-axis, Y-axis and x=2pi .

If int_(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region bounded by y=f(x) , x-axis and coordinate x = 1 and x = 2.

Draw the region bounded by x^2 + y^2 >1 and x^2/1+y^2/4 le 1

The area of the region on place bounded by max (|x|,|y|) le 1/2 is

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}