Home
Class 12
MATHS
Find the area of the region {(x,y): x^(2...

Find the area of the region `{(x,y): x^(2)+y^(2) le 1 le x + y}`

A

`(pi)/(4)+(1)/(2)`

B

`pi+1`

C

`(pi)/(4)-(1)/(2)`

D

`(pi)/(4)+(3)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the region {(x, y) : x^(2) + y^(2) le 4, x + y ge 2} , using the method of integration.

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

The area of the region R={(x,y)//x^(2)le y le x} is

Find the area of the region {(x , y): x^2+y^2lt=1lt=x+y}dot

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

Using integration, find the area of the following region : {(x, y) : x^(2) + y^(2) lt 1 le x + y}