Home
Class 12
MATHS
solve int(x^(2)+6/x+9)dx...

solve `int(x^(2)+6/x+9)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( x^2 + \frac{6}{x} + 9 \right) dx \), we can break it down into simpler parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \left( x^2 + \frac{6}{x} + 9 \right) dx \] ### Step 2: Separate the Integral We can separate the integral into three distinct parts: \[ \int x^2 \, dx + \int \frac{6}{x} \, dx + \int 9 \, dx \] ### Step 3: Integrate Each Part Now we will integrate each part separately. 1. **Integrate \( x^2 \)**: \[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \] 2. **Integrate \( \frac{6}{x} \)**: \[ \int \frac{6}{x} \, dx = 6 \int \frac{1}{x} \, dx = 6 \ln |x| \] 3. **Integrate \( 9 \)**: \[ \int 9 \, dx = 9x \] ### Step 4: Combine the Results Now we combine all the results from the integrations: \[ \int \left( x^2 + \frac{6}{x} + 9 \right) dx = \frac{x^3}{3} + 6 \ln |x| + 9x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \frac{x^3}{3} + 6 \ln |x| + 9x + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

solve int(x^(2)+6x+9)dx =

solve int(x^(2)+6/x)dx

solve int(3x^2)/(x^2+1)dx

solve int(x^6)/(x^2+1)dx

Solve int(x+(1)/(x)+2)dx

solve int(x^(3)+6x^(2)+7)dx

solve int(6x+9)dx =

solve int a^(x+2)dx

int(x^(3)-x-6)/(x-2)dx

int(x^(2))/(1+x^(6)) dx