Home
Class 12
MATHS
Find the coefficient of x^(-7)" in "((...

Find the coefficient of
`x^(-7)" in "((2x^(2))/(3)-(5)/(4x^(5)))^(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^{-7} \) in the expression \[ \left( \frac{2x^2}{3} - \frac{5}{4x^5} \right)^7, \] we will use the Binomial Theorem, which states that: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r. \] ### Step 1: Identify \( a \) and \( b \) In our case, we can identify: - \( a = \frac{2x^2}{3} \) - \( b = -\frac{5}{4x^5} \) ### Step 2: Write the general term The general term \( T_{r+1} \) in the expansion is given by: \[ T_{r+1} = \binom{7}{r} \left( \frac{2x^2}{3} \right)^{7-r} \left( -\frac{5}{4x^5} \right)^r. \] ### Step 3: Simplify the general term Now, we simplify \( T_{r+1} \): \[ T_{r+1} = \binom{7}{r} \left( \frac{2^{7-r} x^{2(7-r)}}{3^{7-r}} \right) \left( -\frac{5^r}{4^r x^{5r}} \right). \] Combining these, we have: \[ T_{r+1} = \binom{7}{r} \cdot \frac{2^{7-r} \cdot (-5)^r}{3^{7-r} \cdot 4^r} \cdot x^{2(7-r) - 5r}. \] ### Step 4: Find the exponent of \( x \) The exponent of \( x \) in \( T_{r+1} \) is given by: \[ 2(7-r) - 5r = 14 - 2r - 5r = 14 - 7r. \] ### Step 5: Set the exponent equal to -7 We need to find \( r \) such that: \[ 14 - 7r = -7. \] Solving for \( r \): \[ 14 + 7 = 7r \implies 21 = 7r \implies r = 3. \] ### Step 6: Substitute \( r \) back into the general term Now, we substitute \( r = 3 \) into the general term: \[ T_{4} = \binom{7}{3} \cdot \frac{2^{7-3} \cdot (-5)^3}{3^{7-3} \cdot 4^3}. \] ### Step 7: Calculate \( T_{4} \) Calculating each component: 1. \( \binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 \) 2. \( 2^{4} = 16 \) 3. \( (-5)^{3} = -125 \) 4. \( 3^{4} = 81 \) 5. \( 4^{3} = 64 \) Putting it all together: \[ T_{4} = 35 \cdot \frac{16 \cdot (-125)}{81 \cdot 64}. \] ### Step 8: Simplify the coefficient Calculating the numerator: \[ 16 \cdot (-125) = -2000. \] Now, substituting back: \[ T_{4} = 35 \cdot \frac{-2000}{5184}. \] Calculating \( 35 \cdot -2000 = -70000 \), and simplifying: \[ T_{4} = \frac{-70000}{5184}. \] ### Final Coefficient Thus, the coefficient of \( x^{-7} \) in the expression is: \[ \frac{-70000}{5184}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^7 in (1+ x^2)^4 (1 + x)^7

Find the coefficient of x^(12) in expansion of (1-x^(2)+x^(4))^(3)(1-x)^(7) .

Write the coefficients of : (i) x^(2) " in" 3x^(3)-5x^(2)-5x+6 " " (ii) x^(3) " in" 7x^(4)+5x^(3)+3x+7 " " (iii) x^(2) " in" 4x+7 " " (iv) x " in" 3x-2x^(2)+7x^(3)

Find the coefficient of x^7 in the expansion of (3x^2+ 1/(5x))^11

Find the coefficient of x^(2) in the polynomial : 2x^(3)-3x^(2)+5x(1-(x)/(2))+2x^(2)(x+7)-13

Find the coefficient of x^(5) in the expansion of ((2 + 3x + 4x^(2)))/(e^(x))

Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7 .

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

The coefficient of x^7 in (1 + 2x + 3x^2 + 4x^3 + …… "to " oo)

Find the coefficient of x^5 in the expansioin of the product (1+2x)^6(1-x)^7dot