Home
Class 12
MATHS
Find the value of (1.02)^(3//2) - (0.98)...

Find the value of `(1.02)^(3//2) - (0.98)^(3//2)` correct to 6 decimals .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1.02)^{\frac{3}{2}} - (0.98)^{\frac{3}{2}} \) correct to six decimal places, we can use the binomial theorem to expand both terms. ### Step-by-Step Solution: 1. **Rewrite the terms**: \[ (1.02)^{\frac{3}{2}} = (1 + 0.02)^{\frac{3}{2}} \quad \text{and} \quad (0.98)^{\frac{3}{2}} = (1 - 0.02)^{\frac{3}{2}} \] 2. **Use the Binomial Expansion**: The binomial expansion for \( (1 + x)^n \) is given by: \[ (1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \ldots \] For \( (1 + 0.02)^{\frac{3}{2}} \): - Here, \( n = \frac{3}{2} \) and \( x = 0.02 \). \[ (1 + 0.02)^{\frac{3}{2}} \approx 1 + \frac{3}{2}(0.02) + \frac{\frac{3}{2}(\frac{3}{2}-1)}{2}(0.02)^2 + \frac{\frac{3}{2}(\frac{3}{2}-1)(\frac{3}{2}-2)}{6}(0.02)^3 \] 3. **Calculate the first few terms**: - First term: \( 1 \) - Second term: \[ \frac{3}{2}(0.02) = 0.03 \] - Third term: \[ \frac{\frac{3}{2} \cdot \frac{1}{2}}{2}(0.02)^2 = \frac{3/4}{2}(0.0004) = \frac{3}{8}(0.0004) = 0.00015 \] - Fourth term: \[ \frac{\frac{3}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2}}{6}(0.02)^3 = \frac{-3/8}{6}(0.000008) = -0.000004 \] 4. **Combine the terms for \( (1.02)^{\frac{3}{2}} \)**: \[ (1.02)^{\frac{3}{2}} \approx 1 + 0.03 + 0.00015 - 0.000004 \approx 1.030146 \] 5. **Now for \( (0.98)^{\frac{3}{2}} \)**: Using the binomial expansion: \[ (1 - 0.02)^{\frac{3}{2}} \approx 1 - \frac{3}{2}(0.02) + \frac{\frac{3}{2}(\frac{1}{2})}{2}(0.02)^2 - \frac{\frac{3}{2}(\frac{1}{2})(-\frac{1}{2})}{6}(0.02)^3 \] - First term: \( 1 \) - Second term: \[ -\frac{3}{2}(0.02) = -0.03 \] - Third term: \[ \frac{3/4}{2}(0.0004) = 0.00015 \] - Fourth term: \[ \frac{-3/8}{6}(0.000008) = -0.000004 \] 6. **Combine the terms for \( (0.98)^{\frac{3}{2}} \)**: \[ (0.98)^{\frac{3}{2}} \approx 1 - 0.03 + 0.00015 - 0.000004 \approx 0.970146 \] 7. **Final Calculation**: \[ (1.02)^{\frac{3}{2}} - (0.98)^{\frac{3}{2}} \approx 1.030146 - 0.970146 = 0.060000 \] ### Final Answer: The value of \( (1.02)^{\frac{3}{2}} - (0.98)^{\frac{3}{2}} \) correct to six decimal places is: \[ \boxed{0.060000} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : log_(0.2) 5

Find the value of : 8-6+(-2)-(-3)+1

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

Evaluate : (0.2)^3

Find the value of : log _5 0.2

If sqrt(2)=1*4 and sqrt(3)=1*7 , find the value of 1/(sqrt(3)-sqrt(2)) , correct to one place of decimal.

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Find the value of (627)^(1//4) correct to 4 decimals places

The approximate value of (7.995)^(1//3) correct to four decimal places , is

If sqrt(2)=1. 414 find the value of sqrt(3)\/ sqrt(6) upto three places of decimals.