Home
Class 12
MATHS
Find the value of (627)^(1//4) correct...

Find the value of `(627)^(1//4) ` correct to 4 decimals places

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (627)^{\frac{1}{4}} \) correct to four decimal places, we can use the binomial theorem and some calculus concepts. Here’s a step-by-step solution: ### Step 1: Rewrite the expression We can express \( 627 \) as \( 625 + 2 \). Thus, we rewrite the expression: \[ (627)^{\frac{1}{4}} = (625 + 2)^{\frac{1}{4}} \] ### Step 2: Define a function Let \( y = f(x) = x^{\frac{1}{4}} \). We will use the derivative of this function to approximate the value. ### Step 3: Calculate the derivative The derivative of \( f(x) \) is: \[ f'(x) = \frac{1}{4} x^{-\frac{3}{4}} \] ### Step 4: Choose \( x \) and \( \Delta x \) We choose \( x = 625 \) (since \( 625 \) is a perfect fourth power) and \( \Delta x = 2 \) (because \( 627 - 625 = 2 \)). ### Step 5: Calculate \( f(625) \) Now, we calculate: \[ f(625) = 625^{\frac{1}{4}} = 5 \] ### Step 6: Calculate \( f'(625) \) Now we find \( f'(625) \): \[ f'(625) = \frac{1}{4} \cdot 625^{-\frac{3}{4}} = \frac{1}{4} \cdot \frac{1}{(625^{\frac{3}{4}})} \] Calculating \( 625^{\frac{3}{4}} \): \[ 625^{\frac{3}{4}} = (5^4)^{\frac{3}{4}} = 5^3 = 125 \] Thus, \[ f'(625) = \frac{1}{4} \cdot \frac{1}{125} = \frac{1}{500} \] ### Step 7: Use the linear approximation Using the linear approximation: \[ \Delta y \approx f'(625) \cdot \Delta x \] Substituting the values: \[ \Delta y \approx \frac{1}{500} \cdot 2 = \frac{2}{500} = 0.004 \] ### Step 8: Calculate \( (627)^{\frac{1}{4}} \) Now we can find: \[ (627)^{\frac{1}{4}} \approx f(625) + \Delta y = 5 + 0.004 = 5.004 \] ### Final Answer Thus, the value of \( (627)^{\frac{1}{4}} \) correct to four decimal places is: \[ \boxed{5.0040} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of root(5)(32.16) correct to 4 decimals places

Find the value of the root(5)(242) correct to 4 decimal places

Find the value of 2^(1-4)

The approximate value of (7.995)^(1//3) correct to four decimal places , is

Find the value of sqrt(5) correct to 2 decimal places, then use it to find the square root of (3-sqrt(5))/(3+sqrt(5)) correct to 2 significant digits.

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

Find the value of the sqrt199 correct to 4 decimal places

Using binomial theorem, the value of (0.999)^3 correct to 3 decimal places is

find the value of 2^(1*4)=

Find the value of (0.99)^10 correct of 4 places of decimal.