Home
Class 12
MATHS
Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (...

Show that ` 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ 1 + \frac{1}{2} \cdot \frac{3}{5} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \left(\frac{3}{5}\right)^2 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \left(\frac{3}{5}\right)^3 + \ldots = \sqrt{\frac{5}{2}}, \] we will analyze the left-hand side and relate it to a known series. ### Step 1: Identify the general term The series can be expressed in terms of a general term. The \( n \)-th term can be written as: \[ T_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \left(\frac{3}{5}\right)^n. \] This can also be expressed using double factorials: \[ T_n = \frac{(2n-1)!!}{(2n)!!} \cdot \left(\frac{3}{5}\right)^n. \] ### Step 2: Recognize the series as a binomial expansion The series resembles the binomial expansion of \( (1 + x)^n \) where \( n \) is a negative half-integer. Specifically, we can relate it to: \[ (1-x)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2 (2^n)} x^n. \] ### Step 3: Set up the equation By substituting \( x = \frac{3}{5} \) into the binomial expansion, we have: \[ (1 - \frac{3}{5})^{-1/2} = (1 - 0.6)^{-1/2} = (0.4)^{-1/2} = \frac{1}{\sqrt{0.4}} = \frac{1}{\sqrt{\frac{2}{5}}} = \sqrt{\frac{5}{2}}. \] ### Step 4: Conclusion Thus, we conclude that: \[ 1 + \frac{1}{2} \cdot \frac{3}{5} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \left(\frac{3}{5}\right)^2 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \left(\frac{3}{5}\right)^3 + \ldots = \sqrt{\frac{5}{2}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that + 1/4 + (1.3)/(4.8) + (1.3.5)/(4.8.12) + …….= sqrt2

2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

2 (3)/(5) + 1 (4)/(5) + 3 (2)/(5

Show that 1+3/4 + (3.5)/(4.8)+ (3.5.7)/(4.8.12)+ …… = 2sqrt2

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

Show that 4sin27^0=(5+sqrt(5))^(1/2)-(3-sqrt(5))^(1/2)

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .