Home
Class 12
MATHS
Find sum(i=1)^n sum(i=1)^n sum(k=1)^n (i...

Find `sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the summation \( \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (ijk) \), we can break it down step by step. ### Step 1: Understand the Summation We need to evaluate the triple summation where \( i, j, k \) each run from 1 to \( n \). This means we will be summing the product \( ijk \) for all combinations of \( i, j, k \). ### Step 2: Separate the Summation We can separate the summation into individual parts. The expression can be rewritten as: \[ \sum_{i=1}^n i \sum_{j=1}^n j \sum_{k=1}^n k \] ### Step 3: Calculate Each Summation Now we need to calculate each of the summations \( \sum_{i=1}^n i \), \( \sum_{j=1}^n j \), and \( \sum_{k=1}^n k \). The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{m=1}^n m = \frac{n(n+1)}{2} \] Thus, we have: \[ \sum_{i=1}^n i = \frac{n(n+1)}{2} \] \[ \sum_{j=1}^n j = \frac{n(n+1)}{2} \] \[ \sum_{k=1}^n k = \frac{n(n+1)}{2} \] ### Step 4: Combine the Results Now we can substitute these results back into our separated summation: \[ \sum_{i=1}^n i \sum_{j=1}^n j \sum_{k=1}^n k = \left( \frac{n(n+1)}{2} \right) \left( \frac{n(n+1)}{2} \right) \left( \frac{n(n+1)}{2} \right) \] ### Step 5: Simplify the Expression This simplifies to: \[ = \left( \frac{n(n+1)}{2} \right)^3 = \frac{n^3 (n+1)^3}{8} \] ### Final Result Thus, the final result for the summation \( \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (ijk) \) is: \[ \frac{n^3 (n+1)^3}{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If x_1,x_2,.......,x_n are n values of a variable X such that sum_(i=1)^n (x_i-2)=110 and sum_(i=1)^n(x_i-5) =20 . Find the value of n and the mean.

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

Value of L = lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1] is

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

If x_1, x_2, .....x_n are n observations such that sum_(i=1)^n (x_i)^2=400 and sum_(i=1)^n x_i=100 then possible values of n among the following is

If b_i=1-a_i ,n a=sum_(i=1)^n a_i ,n b=sum_(i=1)^n b_i ,t h e nsum_(i=1)^n a_i ,b_i+sum_(i=1)^n(a_i-a)^2= a b b. n a b c. (n+1)a b d. n a b

Find the values of n and bar X in each of the following cases: (i) sum_(i=1)^n (x_1-12)=-10 and sum_(i=1)^n (x_1-3)=62 (ii) sum_(i=1)^n (x_1-10)=30 and sum_(i=1)^n (x_1-6)=150

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)