Home
Class 12
MATHS
If (1 + x + x^2)^n = C0 + C1x + C2x^2 + ...

If `(1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n` then find `C_0 + C_3 + C_6 + ……. `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( C_0 + C_3 + C_6 + \ldots \) from the expansion of \( (1 + x + x^2)^n \). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression: \[ (1 + x + x^2)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] Here, \( C_k \) represents the coefficient of \( x^k \) in the expansion. 2. **Substituting \( x = 1 \)**: To find the total sum of coefficients, we substitute \( x = 1 \): \[ (1 + 1 + 1^2)^n = 3^n \] This gives us: \[ C_0 + C_1 + C_2 + C_3 + \ldots + C_n = 3^n \tag{1} \] 3. **Substituting \( x = \omega \)**: Next, we substitute \( x = \omega \), where \( \omega \) is a complex cube root of unity (i.e., \( \omega = e^{2\pi i / 3} \)). We know that: \[ 1 + \omega + \omega^2 = 0 \] Therefore, \[ (1 + \omega + \omega^2)^n = 0^n = 0 \] This results in: \[ C_0 + C_1 \omega + C_2 \omega^2 + C_3 \omega^3 + \ldots + C_n \omega^n = 0 \tag{2} \] 4. **Substituting \( x = \omega^2 \)**: Similarly, substituting \( x = \omega^2 \): \[ (1 + \omega^2 + (\omega^2)^2)^n = 0 \] This gives us: \[ C_0 + C_1 \omega^2 + C_2 \omega + C_3 \omega^3 + \ldots + C_n (\omega^2)^n = 0 \tag{3} \] 5. **Adding Equations (2) and (3)**: Now, we add equations (2) and (3): \[ (C_0 + C_1 \omega + C_2 \omega^2 + C_3 \omega^3 + \ldots) + (C_0 + C_1 \omega^2 + C_2 \omega + C_3 \omega^3 + \ldots) = 0 + 0 \] This simplifies to: \[ 2C_0 + (C_1 + C_2)(\omega + \omega^2) + C_3(1 + 1) + \ldots = 0 \] Since \( \omega + \omega^2 = -1 \), we can express this as: \[ 2C_0 - C_1 - C_2 + 2C_3 + \ldots = 0 \] 6. **Using the Symmetry**: We can observe that the coefficients \( C_k \) for \( k \equiv 0 \mod 3 \) will sum up to a specific value. The coefficients can be grouped into three sets based on their indices modulo 3. 7. **Final Calculation**: From the earlier results, we can conclude that: \[ 3^n = 3(C_0 + C_3 + C_6 + \ldots) \] Thus, \[ C_0 + C_3 + C_6 + \ldots = \frac{3^n}{3} = 3^{n-1} \] ### Final Answer: \[ C_0 + C_3 + C_6 + \ldots = 3^{n-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_1 - C_3 + C_5 + ……

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the series (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

If (1 + x + x^2)^n = (C_0 + C_1x + C_2 x^2 + ............) then the value of C_0 C_1-C_1C_2+C_2C_3.....

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0