Home
Class 12
MATHS
Find the expansion of (1+2x−x^2)^4...

Find the expansion of `(1+2x−x^2)^4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the expansion of \( (1 + 2x - x^2)^4 \) using the Binomial Theorem, we can follow these steps: ### Step 1: Identify the terms for the Binomial Expansion We can treat \( (1 + 2x - x^2) \) as a single term. Let's denote \( y = 2x - x^2 \). Thus, we rewrite the expression as \( (1 + y)^4 \). ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, the expansion of \( (a + b)^n \) is given by: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \( a = 1 \), \( b = y = 2x - x^2 \), and \( n = 4 \). Therefore, we have: \[ (1 + (2x - x^2))^4 = \sum_{k=0}^{4} \binom{4}{k} (1)^{4-k} (2x - x^2)^k \] ### Step 3: Calculate each term in the expansion Now we need to calculate each term in the sum for \( k = 0, 1, 2, 3, 4 \): 1. **For \( k = 0 \)**: \[ \binom{4}{0} (1)^{4} (2x - x^2)^0 = 1 \] 2. **For \( k = 1 \)**: \[ \binom{4}{1} (1)^{3} (2x - x^2)^1 = 4(2x - x^2) = 8x - 4x^2 \] 3. **For \( k = 2 \)**: \[ \binom{4}{2} (1)^{2} (2x - x^2)^2 = 6(2x - x^2)^2 \] Expanding \( (2x - x^2)^2 \): \[ (2x - x^2)^2 = 4x^2 - 4x^3 + x^4 \] Thus, \[ 6(4x^2 - 4x^3 + x^4) = 24x^2 - 24x^3 + 6x^4 \] 4. **For \( k = 3 \)**: \[ \binom{4}{3} (1)^{1} (2x - x^2)^3 = 4(2x - x^2)^3 \] Expanding \( (2x - x^2)^3 \): \[ (2x - x^2)^3 = 8x^3 - 12x^4 + 6x^5 - x^6 \] Thus, \[ 4(8x^3 - 12x^4 + 6x^5 - x^6) = 32x^3 - 48x^4 + 24x^5 - 4x^6 \] 5. **For \( k = 4 \)**: \[ \binom{4}{4} (1)^{0} (2x - x^2)^4 = (2x - x^2)^4 \] Expanding \( (2x - x^2)^4 \): \[ (2x - x^2)^4 = 16x^4 - 32x^5 + 24x^6 - 8x^7 + x^8 \] ### Step 4: Combine all terms Now we combine all the terms we calculated: \[ 1 + (8x - 4x^2) + (24x^2 - 24x^3 + 6x^4) + (32x^3 - 48x^4 + 24x^5 - 4x^6) + (16x^4 - 32x^5 + 24x^6 - 8x^7 + x^8) \] Combining like terms: - Constant term: \( 1 \) - Coefficient of \( x \): \( 8x \) - Coefficient of \( x^2 \): \( -4x^2 + 24x^2 = 20x^2 \) - Coefficient of \( x^3 \): \( -24x^3 + 32x^3 = 8x^3 \) - Coefficient of \( x^4 \): \( 6x^4 - 48x^4 + 16x^4 = -26x^4 \) - Coefficient of \( x^5 \): \( 24x^5 - 32x^5 = -8x^5 \) - Coefficient of \( x^6 \): \( -4x^6 + 24x^6 = 20x^6 \) - Coefficient of \( x^7 \): \( -8x^7 \) - Coefficient of \( x^8 \): \( x^8 \) ### Final Expansion Thus, the final expansion of \( (1 + 2x - x^2)^4 \) is: \[ 1 + 8x + 20x^2 + 8x^3 - 26x^4 - 8x^5 + 20x^6 - 8x^7 + x^8 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^40 in the expansion of (1+2x+x^2)^54

Find the coefficients of x^4 in the expansion of (1+2x+x^2)^3

Find the middle term in the expansion of : (1-2x+x^2)^n

If, |x|<1,Find the coefficient of x^n in the expansion of (1+ 2x + 3x^2 + 4x^3 + …..)^(1/2)

Find the middle term in the expansion of (1+2x+x^(2))^(10)

Find the middle term in the expansion of (1+2x+x^(2))^(10)

Find the number of terms in the expansion of (1-2x+x^(2))^(n) .

Find the coefficient of x^(40) in the expansion of (1+2x+x^2)^(27)dot

Find the coefficient of x^(40) in the expansion of (1+2x+x^2)^(27)dot

If |x|<1, then find the coefficient of x^n in the expansion of (1+2x+3x^2+4x^3+)^(1//2)dot