Home
Class 12
MATHS
If the k^(th) term is the middle term in...

If the `k^(th)` term is the middle term in `(x^2 - (1)/(2x))^20` find
`T_k` and `T_(k+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the \( k^{th} \) term and the \( (k+3)^{th} \) term in the expansion of \( (x^2 - \frac{1}{2x})^{20} \), given that the \( k^{th} \) term is the middle term. ### Step-by-step Solution: 1. **Identify the Middle Term**: The given expression is \( (x^2 - \frac{1}{2x})^{20} \). Since the exponent \( n = 20 \) is even, the middle term can be found using the formula: \[ \text{Middle term} = T_{\left(\frac{n}{2} + 1\right)} = T_{11} \] 2. **Find \( T_{11} \)**: The general term in a binomial expansion is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] Here, \( a = x^2 \), \( b = -\frac{1}{2x} \), and \( n = 20 \). For \( T_{11} \), we have \( r = 10 \): \[ T_{11} = \binom{20}{10} (x^2)^{20-10} \left(-\frac{1}{2x}\right)^{10} \] Simplifying this: \[ T_{11} = \binom{20}{10} (x^2)^{10} \left(-\frac{1}{2}\right)^{10} (x^{-10}) \] \[ = \binom{20}{10} x^{20} \cdot \frac{(-1)^{10}}{2^{10}} \cdot x^{-10} \] \[ = \binom{20}{10} \cdot \frac{1}{2^{10}} \cdot x^{10} \] 3. **Calculate \( T_{11} \)**: \[ T_{11} = \binom{20}{10} \cdot \frac{1}{1024} \cdot x^{10} \] The value of \( \binom{20}{10} \) is 184756, so: \[ T_{11} = \frac{184756}{1024} x^{10} \] 4. **Find \( k \)**: Since \( T_k \) is the middle term, we have \( k = 11 \). 5. **Find \( T_{k+3} = T_{14} \)**: Now we need to find \( T_{14} \) (which is \( T_{k+3} \)): \[ T_{14} = \binom{20}{13} (x^2)^{20-13} \left(-\frac{1}{2x}\right)^{13} \] Here, \( r = 13 \): \[ T_{14} = \binom{20}{13} (x^2)^{7} \left(-\frac{1}{2}\right)^{13} (x^{-13}) \] \[ = \binom{20}{13} x^{14} \cdot \frac{(-1)^{13}}{2^{13}} \cdot x^{-13} \] \[ = \binom{20}{13} \cdot \frac{-1}{8192} \cdot x^{1} \] Since \( \binom{20}{13} = \binom{20}{7} = 77520 \): \[ T_{14} = \frac{-77520}{8192} x \] ### Final Answers: - \( T_k = T_{11} = \frac{184756}{1024} x^{10} \) - \( T_{k+3} = T_{14} = \frac{-77520}{8192} x \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the middle term in ((2x)/3-(3y)/2)^(20)

If r^(th) term is the middle term in the expansion of (x^2-1/(2x))^20 , then (r+3)^(th) term is

Find the middle term in the expansion of (x- 1/(2x))^12

Find the middle term in the expansion (2/3x^2-3/(2x))^(20) .

Find the middle term in the expansion of (3x-(1)/(2x))^(16)

Find the middle term in the expansion of (3x-(1)/(2x))^(16)

Find the middle term in the expansion of (2x^2-1/x)^7

Find the middle term in the expansion of (2x^2-1/x)^7

Find the middle term in the expansion of ((2x)/3-3/(2x))^(20)

Find the middle term in the expansion of (1+2x+x^(2))^(10)