Home
Class 12
MATHS
If ""^(22)C(r) is the largest binomial c...

If `""^(22)C_(r)` is the largest binomial coefficient in the expansion of `(1+x)^(22)`
, find the value of `""^(13)C_(r)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \binom{13}{r} \) given that \( \binom{22}{r} \) is the largest binomial coefficient in the expansion of \( (1+x)^{22} \). ### Step-by-Step Solution: 1. **Identify the largest binomial coefficient**: In the expansion of \( (1+x)^{n} \), the largest binomial coefficient occurs at \( r = \frac{n}{2} \) when \( n \) is even. Here, \( n = 22 \), which is even. \[ r = \frac{22}{2} = 11 \] 2. **Equate the given condition**: Since it is given that \( \binom{22}{r} \) is the largest coefficient, we can set: \[ r = 11 \] 3. **Find \( \binom{13}{r} \)**: Now we need to calculate \( \binom{13}{r} \) where \( r = 11 \). \[ \binom{13}{11} = \binom{13}{2} \] (Using the property \( \binom{n}{r} = \binom{n}{n-r} \)) 4. **Calculate \( \binom{13}{2} \)**: The formula for binomial coefficients is: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] For \( \binom{13}{2} \): \[ \binom{13}{2} = \frac{13!}{2!(13-2)!} = \frac{13 \times 12}{2 \times 1} = \frac{156}{2} = 78 \] 5. **Final Answer**: Therefore, the value of \( \binom{13}{r} \) is: \[ \boxed{78} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the largest binomial coefficients in the expansion of (1 + x)^24

Find the largest binomial coefficients in the expansion of (1+x)^19

The largest coefficient in the expansion of (1 + x)^(30) is.......

The largest coefficient in the expansion of (1 + x)^(30) is.......

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2) , is

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)+2C_(1) +3C_(2)+. . . .+(n+1)C_(n) is equal to