Home
Class 12
MATHS
Find the numerically greatest terms in t...

Find the numerically greatest terms in the expansion of `(3 + (2x)/(5))^12` when x = 3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerically greatest term in the expansion of \((3 + \frac{2x}{5})^{12}\) when \(x = \frac{3}{4}\), we will follow these steps: ### Step 1: Identify the values of \(n\) and \(x\) The expression is \((3 + \frac{2x}{5})^{12}\). Here, \(n = 12\) and we will substitute \(x = \frac{3}{4}\) later. ### Step 2: Rewrite the expression We can factor out \(3^{12}\) from the expression: \[ (3 + \frac{2x}{5})^{12} = 3^{12} \left(1 + \frac{2x}{15}\right)^{12} \] ### Step 3: Calculate \(\frac{2x}{15}\) Substituting \(x = \frac{3}{4}\): \[ \frac{2x}{15} = \frac{2 \cdot \frac{3}{4}}{15} = \frac{3}{30} = \frac{1}{10} \] ### Step 4: Find \(m\) Using the formula \(m = \frac{n + 1 \cdot |x|}{|x| + 1}\): - Here, \(|x| = \frac{1}{10}\). - So, \(m = \frac{12 + 1 \cdot \frac{1}{10}}{\frac{1}{10} + 1} = \frac{12 + \frac{1}{10}}{\frac{1}{10} + 1} = \frac{12.1}{1.1}\). ### Step 5: Simplify \(m\) Calculating \(m\): \[ m = \frac{121}{11} = 11 \] ### Step 6: Determine the greatest term Since \(m\) is an integer, the numerically greatest terms are \(T_m\) and \(T_{m+1}\), which correspond to \(T_{11}\) and \(T_{12}\). ### Step 7: Find \(T_{11}\) and \(T_{12}\) The general term \(T_r\) in the binomial expansion is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] In our case: - \(a = 3\) - \(b = \frac{2x}{5} = \frac{2 \cdot \frac{3}{4}}{5} = \frac{3}{10}\) #### For \(T_{11}\): \[ T_{11} = \binom{12}{10} \cdot 3^{12-10} \cdot \left(\frac{3}{10}\right)^{10} = \binom{12}{2} \cdot 3^2 \cdot \left(\frac{3}{10}\right)^{10} \] Calculating: \[ \binom{12}{2} = \frac{12 \cdot 11}{2} = 66 \] \[ T_{11} = 66 \cdot 9 \cdot \left(\frac{3^{10}}{10^{10}}\right) = 594 \cdot \frac{59049}{10000000000} \] #### For \(T_{12}\): \[ T_{12} = \binom{12}{11} \cdot 3^{12-11} \cdot \left(\frac{3}{10}\right)^{11} = 12 \cdot 3^1 \cdot \left(\frac{3}{10}\right)^{11} \] Calculating: \[ T_{12} = 12 \cdot 3 \cdot \frac{3^{11}}{10^{11}} = 36 \cdot \frac{177147}{100000000000} \] ### Conclusion The numerically greatest terms in the expansion of \((3 + \frac{2x}{5})^{12}\) when \(x = \frac{3}{4}\) are \(T_{11}\) and \(T_{12}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the numerically greatest terms in the expansion of (3y + 7x)^10 when x = 1/3, y = 1/2

Find the numerically greatest terms in the expansion of (3x-4y)^(14) when x = 8,y = 3

Find the numerically greatest term (s) in the expansion of (4+3x)^(15)" when "x=(7)/(2)

Find the numerically greatest terms in the expansion of (2 +3x)^10 when x = 11/8

Find the numerically Greatest Term In the expansion of (3-5x)^15 when x=1/5

Find the numerically greatest term in the expansion of (2+5x)^(21) when x = 2/5 .

Find the numerically greatest term in the expansion of (3-5x)^(15)w h e nx=1//5.

The numerically greatest term in the expansion of (1 + x)^(10) when x = 2//3 , is

Find the numerically greatest term (s) in the expansion of (3+7x)^(n)" when "x=(4)/(5),n=15

Find numerically greatest term is the expansion of (3-5x)^11 "when " x=1/5