Home
Class 12
MATHS
Find the numerically greatest terms in t...

Find the numerically greatest terms in the expansion of ` (3y + 7x)^10` when ` x = 1/3, y = 1/2 `

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerically greatest term in the expansion of \( (3y + 7x)^{10} \) when \( x = \frac{1}{3} \) and \( y = \frac{1}{2} \), we will follow these steps: ### Step 1: Identify the parameters The expression we are working with is \( (3y + 7x)^{10} \). Here, \( n = 10 \). ### Step 2: Rewrite the expression We can rewrite the expression in a form similar to \( (a + b)^n \): \[ (3y + 7x)^{10} = 3^{10}y^{10} \left(1 + \frac{7x}{3y}\right)^{10} \] ### Step 3: Calculate \( \frac{7x}{3y} \) Substituting the values of \( x \) and \( y \): \[ \frac{7x}{3y} = \frac{7 \cdot \frac{1}{3}}{3 \cdot \frac{1}{2}} = \frac{\frac{7}{3}}{\frac{3}{2}} = \frac{7}{3} \cdot \frac{2}{3} = \frac{14}{9} \] ### Step 4: Find \( m \) To find the term that is numerically greatest, we use the formula: \[ m = \frac{n + 1}{1 + \frac{7x}{3y}} = \frac{10 + 1}{1 + \frac{14}{9}} = \frac{11}{\frac{23}{9}} = \frac{11 \cdot 9}{23} = \frac{99}{23} \approx 4.304 \] ### Step 5: Determine the integer part of \( m \) Since \( m \) is not an integer, we take the greatest integer less than \( m \): \[ \lfloor m \rfloor = 4 \] ### Step 6: Identify the term The numerically greatest term corresponds to \( T_{m + 1} \), which is \( T_5 \). ### Step 7: Calculate \( T_5 \) Using the general term formula for binomial expansion: \[ T_r = \binom{n}{r} (3y)^{n-r} (7x)^r \] For \( T_5 \) (where \( r = 5 \)): \[ T_5 = \binom{10}{5} (3y)^{10-5} (7x)^5 = \binom{10}{5} (3y)^5 (7x)^5 \] ### Step 8: Substitute values of \( x \) and \( y \) Now substituting \( y = \frac{1}{2} \) and \( x = \frac{1}{3} \): \[ T_5 = \binom{10}{5} (3 \cdot \frac{1}{2})^5 (7 \cdot \frac{1}{3})^5 = \binom{10}{5} \left(\frac{3}{2}\right)^5 \left(\frac{7}{3}\right)^5 \] ### Step 9: Simplify Calculating \( T_5 \): \[ T_5 = \binom{10}{5} \left(\frac{3}{2} \cdot \frac{7}{3}\right)^5 = \binom{10}{5} \left(\frac{7}{2}\right)^5 \] ### Step 10: Final Calculation Calculating \( \binom{10}{5} = 252 \): \[ T_5 = 252 \cdot \left(\frac{7}{2}\right)^5 = 252 \cdot \frac{16807}{32} \] Thus, the numerically greatest term in the expansion of \( (3y + 7x)^{10} \) when \( x = \frac{1}{3} \) and \( y = \frac{1}{2} \) is: \[ T_5 = \frac{252 \cdot 16807}{32} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the numerically greatest terms in the expansion of (2 +3x)^10 when x = 11/8

Find the numerically greatest terms in the expansion of (3 + (2x)/(5))^12 when x = 3/4

Find the numerically greatest terms in the expansion of (3x-4y)^(14) when x = 8,y = 3

The numerically greatest term in the expansion of (1 + x)^(10) when x = 2//3 , is

Find numerically greatest term in the expansion of (2 + 3 x)^9 , when x = 3/2.

Find the numerically greatest term in the expansion of (2+5x)^(21) when x = 2/5 .

Find the numerically greatest term (s) in the expansion of (4+3x)^(15)" when "x=(7)/(2)

Find numerically greatest term is the expansion of (3-5x)^11 "when " x=1/5

Find the numerically Greatest Term In the expansion of (3-5x)^15 when x=1/5

Find the numerically greatest term in the expansion of (3-5x)^(15)w h e nx=1//5.