Home
Class 12
MATHS
If (1+x+x^(2)+x^(3))^(7)=b(0)+b(1)x+b^(2...

If `(1+x+x^(2)+x^(3))^(7)=b_(0)+b_(1)x+b^(2)x^(2)+….b_(21)x^(21)`, then find the value of
`b_(0)+b_(2)+b_(4)+……+b_(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b_0 + b_2 + b_4 + \ldots + b_{20} \) from the expression \( (1 + x + x^2 + x^3)^7 \). ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ (1 + x + x^2 + x^3)^7 \] 2. **Evaluate at \( x = 1 \)**: To find the sum of all coefficients \( b_0 + b_1 + b_2 + \ldots + b_{21} \), we substitute \( x = 1 \): \[ (1 + 1 + 1 + 1)^7 = 4^7 \] This gives us: \[ b_0 + b_1 + b_2 + \ldots + b_{21} = 4^7 \] 3. **Evaluate at \( x = -1 \)**: Next, we substitute \( x = -1 \) to find the alternating sum of the coefficients: \[ (1 - 1 + 1 - 1)^7 = 0^7 = 0 \] This gives us: \[ b_0 - b_1 + b_2 - b_3 + b_4 - b_5 + \ldots + b_{21} = 0 \] 4. **Set Up the Equations**: We now have two equations: - From \( x = 1 \): \[ b_0 + b_1 + b_2 + \ldots + b_{21} = 4^7 \] - From \( x = -1 \): \[ b_0 - b_1 + b_2 - b_3 + b_4 - b_5 + \ldots + b_{21} = 0 \] 5. **Add the Two Equations**: Adding both equations helps eliminate the odd indexed coefficients: \[ (b_0 + b_1 + b_2 + \ldots + b_{21}) + (b_0 - b_1 + b_2 - b_3 + \ldots + b_{21}) = 4^7 + 0 \] This simplifies to: \[ 2(b_0 + b_2 + b_4 + \ldots + b_{20}) = 4^7 \] 6. **Solve for \( b_0 + b_2 + b_4 + \ldots + b_{20} \)**: Dividing both sides by 2 gives us: \[ b_0 + b_2 + b_4 + \ldots + b_{20} = \frac{4^7}{2} = 2 \cdot 4^6 = 2^{1 + 12} = 2^{13} \] ### Final Answer: Thus, the value of \( b_0 + b_2 + b_4 + \ldots + b_{20} \) is: \[ \boxed{8192} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x+x^(2)+x^(3))^(7)=b_(0)+b_(1)x+b^(2)x^(2)+….b_(21)x^(21) , then find the value of b_(1)+b_(3)+b_(5)+……+b_(21)

If (e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... , then the value of B_(n) - B_(n-1) is

If (e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... , then the value of B_(n) - B_(n-1) is

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If 49x^(2)-b=(7x+(1)/(2))(7x-(1)/(2)), then the value of b is

If abx^(2)=(a-b)^(2)(x+1) , then find the value of 1+(4)/(x)+(4)/(x^(2)) in terms of a and b.

If (x^(a^(2)))/(x^(b^(2)))=x^(16), x gt 1, and a+b=2 , what is the value of a-b ?

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

If the range of the function f(x)= cot^(-1)((x^(2))/(x^(2)+1)) is (a, b), find the value of ((b)/(a)+2) .