Home
Class 12
MATHS
If (1+x+x^(2)+x^(3))^(7)=b(0)+b(1)x+b^(2...

If `(1+x+x^(2)+x^(3))^(7)=b_(0)+b_(1)x+b^(2)x^(2)+….b_(21)x^(21)`, then find the value of
`b_(1)+b_(3)+b_(5)+……+b_(21)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the odd powers of \( x \) in the expansion of \( (1 + x + x^2 + x^3)^7 \). ### Step 1: Simplify the expression The expression \( 1 + x + x^2 + x^3 \) can be rewritten using the formula for the sum of a geometric series. The sum can be expressed as: \[ 1 + x + x^2 + x^3 = \frac{1 - x^4}{1 - x} \quad \text{for } x \neq 1 \] Thus, we have: \[ (1 + x + x^2 + x^3)^7 = \left( \frac{1 - x^4}{1 - x} \right)^7 = (1 - x^4)^7 (1 - x)^{-7} \] ### Step 2: Expand using the Binomial Theorem We can expand \( (1 - x^4)^7 \) and \( (1 - x)^{-7} \) using the Binomial Theorem. 1. For \( (1 - x^4)^7 \): \[ (1 - x^4)^7 = \sum_{k=0}^{7} \binom{7}{k} (-1)^k x^{4k} \] 2. For \( (1 - x)^{-7} \): \[ (1 - x)^{-7} = \sum_{m=0}^{\infty} \binom{m + 6}{6} x^m \] ### Step 3: Find the coefficients We need to find the coefficients of odd powers of \( x \) in the product of these two expansions. The coefficient of \( x^n \) in the product can be calculated by convolving the coefficients from both expansions. ### Step 4: Evaluate at specific values To find \( b_1 + b_3 + b_5 + \ldots + b_{21} \), we can use the property of substituting \( x = 1 \) and \( x = -1 \): 1. Substitute \( x = 1 \): \[ (1 + 1 + 1 + 1)^7 = 4^7 = 16384 \] This gives us the sum of all coefficients: \[ b_0 + b_1 + b_2 + \ldots + b_{21} = 16384 \] 2. Substitute \( x = -1 \): \[ (1 - 1 + 1 - 1)^7 = 0^7 = 0 \] This gives us the alternating sum of coefficients: \[ b_0 - b_1 + b_2 - b_3 + \ldots + b_{21} = 0 \] ### Step 5: Set up the equations From the two equations, we have: 1. \( b_0 + b_1 + b_2 + \ldots + b_{21} = 16384 \) (Equation 1) 2. \( b_0 - b_1 + b_2 - b_3 + \ldots + b_{21} = 0 \) (Equation 2) ### Step 6: Solve for the sum of odd coefficients Let \( S_e = b_0 + b_2 + b_4 + \ldots + b_{20} \) (sum of even coefficients) and \( S_o = b_1 + b_3 + b_5 + \ldots + b_{21} \) (sum of odd coefficients). From Equation 1: \[ S_e + S_o = 16384 \] From Equation 2: \[ S_e - S_o = b_0 + b_2 + b_4 + \ldots + b_{20} - (b_1 + b_3 + b_5 + \ldots + b_{21}) = 0 \] ### Step 7: Solve the system of equations Adding the two equations: \[ (S_e + S_o) + (S_e - S_o) = 16384 + 0 \] \[ 2S_e = 16384 \implies S_e = 8192 \] Subtracting the second equation from the first: \[ (S_e + S_o) - (S_e - S_o) = 16384 - 0 \] \[ 2S_o = 16384 \implies S_o = 8192 \] ### Final Result Thus, the value of \( b_1 + b_3 + b_5 + \ldots + b_{21} \) is: \[ \boxed{8192} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x+x^(2)+x^(3))^(7)=b_(0)+b_(1)x+b^(2)x^(2)+….b_(21)x^(21) , then find the value of b_(0)+b_(2)+b_(4)+……+b_(20)

If (e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... , then the value of B_(n) - B_(n-1) is

If (e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... , then the value of B_(n) - B_(n-1) is

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If 49x^(2)-b=(7x+(1)/(2))(7x-(1)/(2)), then the value of b is

If (a-b), a and (a+b) are zeroes of 2x^(3)-12x^(2)+5x-1 , then find the value of a.

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3