Home
Class 12
MATHS
Find the coefficient of x^4 in (1 - 4x)^...

Find the coefficient of `x^4` in `(1 - 4x)^(-3//5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^4 \) in the expansion of \( (1 - 4x)^{-\frac{3}{5}} \), we can use the Binomial Theorem for negative exponents. ### Step-by-Step Solution: 1. **Identify the General Form**: The Binomial Theorem states that: \[ (1 - x)^{-n} = \sum_{r=0}^{\infty} \binom{n+r-1}{r} x^r \] For our problem, we have \( n = \frac{3}{5} \) and \( x = 4x \). 2. **Set Up the Expansion**: We rewrite the expression: \[ (1 - 4x)^{-\frac{3}{5}} = \sum_{r=0}^{\infty} \binom{\frac{3}{5} + r - 1}{r} (4x)^r \] 3. **Find the Coefficient of \( x^4 \)**: We need the term where \( r = 4 \): \[ \text{Coefficient of } x^4 = \binom{\frac{3}{5} + 4 - 1}{4} (4)^4 \] 4. **Calculate the Binomial Coefficient**: \[ \binom{\frac{3}{5} + 3}{4} = \binom{\frac{3}{5} + \frac{15}{5}}{4} = \binom{\frac{18}{5}}{4} \] Using the formula for the binomial coefficient: \[ \binom{a}{b} = \frac{a(a-1)(a-2)(a-3)}{b!} \] We have: \[ \binom{\frac{18}{5}}{4} = \frac{\frac{18}{5} \cdot \frac{13}{5} \cdot \frac{8}{5} \cdot \frac{3}{5}}{4!} \] 5. **Calculate \( 4^4 \)**: \[ 4^4 = 256 \] 6. **Combine the Results**: Now, we can combine the results: \[ \text{Coefficient of } x^4 = \frac{\frac{18 \cdot 13 \cdot 8 \cdot 3}{625}}{24} \cdot 256 \] 7. **Simplify**: \[ = \frac{18 \cdot 13 \cdot 8 \cdot 3 \cdot 256}{625 \cdot 24} \] 8. **Final Calculation**: Calculate \( 18 \cdot 13 \cdot 8 \cdot 3 \): \[ 18 \cdot 13 = 234, \quad 234 \cdot 8 = 1872, \quad 1872 \cdot 3 = 5616 \] Now, calculate: \[ \frac{5616 \cdot 256}{625 \cdot 24} \] First, calculate \( 625 \cdot 24 = 15000 \). Finally, we compute: \[ \frac{5616 \cdot 256}{15000} \] This gives us the coefficient of \( x^4 \). ### Final Answer: The coefficient of \( x^4 \) in the expansion of \( (1 - 4x)^{-\frac{3}{5}} \) is \( \frac{59904}{625} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^5 in (3 - 4x)^(-1)

Find the coefficient of x^5 in (x+3)^8

The coefficient of x^3 in (1-4x)^(1//2) is

Find the coefficient of x^4 in (1 + x + x^2)^10

Find the coefficient of x^5""in(x+3)^8

Find the coefficient of x^7 in (1+ x^2)^4 (1 + x)^7

Find the coefficient of x^(-2) in (1+x^(2)+x^(4)) (1-1/(x^(2)))^(18)

Find the coefficient of x^-1 in (1+3 x^2+x^4) (1+1/x)^8

Find the coefficient of x^(-6)" in "(3x-(4)/(x))^(10)

Find the coefficient of x^(-7)" in "((2x^(2))/(3)-(5)/(4x^(5)))^(7)