Home
Class 12
MATHS
Find the value of the sqrt199 correct t...

Find the value of the `sqrt199` correct to 4 decimal places

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{199} \) correct to four decimal places, we can use the approximation method based on the binomial theorem. Here’s a step-by-step solution: ### Step 1: Identify the base value and the increment We know that \( 199 \) is close to \( 196 \), which is a perfect square. We can express \( 199 \) as: \[ 199 = 196 + 3 \] Here, \( x = 196 \) and \( \Delta x = 3 \). ### Step 2: Define the function We define the function \( f(x) = \sqrt{x} \). We will use this function to find \( f(199) \). ### Step 3: Calculate \( f(x) \) at the base value Calculate \( f(196) \): \[ f(196) = \sqrt{196} = 14 \] ### Step 4: Calculate the derivative \( f'(x) \) The derivative of \( f(x) = x^{1/2} \) is: \[ f'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] Now, evaluate \( f'(196) \): \[ f'(196) = \frac{1}{2\sqrt{196}} = \frac{1}{2 \cdot 14} = \frac{1}{28} \] ### Step 5: Apply the approximation formula Using the approximation formula: \[ f(x + \Delta x) \approx f(x) + f'(x) \Delta x \] Substituting the values: \[ f(199) \approx f(196) + f'(196) \cdot 3 \] \[ f(199) \approx 14 + \frac{1}{28} \cdot 3 \] ### Step 6: Calculate \( \frac{3}{28} \) Now, calculate \( \frac{3}{28} \): \[ \frac{3}{28} \approx 0.1071 \] ### Step 7: Add the values Now, add this to \( 14 \): \[ f(199) \approx 14 + 0.1071 = 14.1071 \] ### Final Answer Thus, the value of \( \sqrt{199} \) correct to four decimal places is: \[ \sqrt{199} \approx 14.1071 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the root(5)(242) correct to 4 decimal places

Find the value of sqrt(5) correct to 2 decimal places, then use it to find the square root of (3-sqrt(5))/(3+sqrt(5)) correct to 2 significant digits.

Find the value of root(5)(32.16) correct to 4 decimals places

Find the value of (627)^(1//4) correct to 4 decimals places

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (2-sqrt(3))/(sqrt(3))

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (1)/(sqrt(3)-sqrt(2))

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (1)/(3+2sqrt(2))

Find an approximate value of the following corrected to 4 decimal places. root(7)(127)

Find an approximate value of the following corrected to 4 decimal places. root(3)(1002)-root(3)(998)